Радиофизика и радиоастрономия, т.11, №1, с.5-30, 2006.

УДК 533.922, 530.18

Линейные и нелинейные волны

(элементарное введение в теорию с применениями к физике плазмы и астрофизике).)

Часть ІІ. Стохастический подход¹.

В.М.Конторович

Радиоастрономический институт НАН Украины Украина, 61002, Харьков, ул. Краснознаменная, 4 E-mail: vkont@ira.kharkov.ua

Содержание².

Предисловие ко второй части.

9. Кинетические уравнения.

10. Слабая турбулентность и распределения с потоками по спектру.

11. Взаимосвязь равновесных и потоковых слаботурбулентных распределений

12. Кинетическое уравнение Смолуховского и слияния галактик.

13. Степенные спектры в природе

Приложение 3. Преобразования симметрии кинетических уравнений.

Приложение 4. Развитое волнение.

Литература.

Предисловие ко 2-й части.

Вторая часть обзора посвящена кинетическим уравнениям для волн (и частиц) и получению на их основе степенных слаботурбулентных распределений. Эти существенно неравновесные распределения обладают определенной универсальностью и часто реализуются в природе в условиях, когда источник и сток энергии (или других сохраняющихся величин) разнесены по частотам или длинам волн, и между ними формируется поток сохраняющейся величины по спектру, параметризующий распределения подобно тому, как температура параметризует равновесные распределения.

Вторая часть может читаться практически независимо от первой. Напомним только, что используемые при определении функции распределения нормальные координаты a и a^* связаны с координатами q и импульсами p осцилляторов, описывающих волны, соотношениями вида: $\sqrt{2} \cdot a = p - iq$, что позволяет перевести сумму квадратов $p^2 + q^2$, входящую в гамильтониан, в разность квадратов $p^2 - (iq)^2$ и факторизовать гамильтониан $H = (p^2 + q^2)/2$, сведя его к виду в зависимости от нормировки $H = aa^*$ или $H = \omega aa^*$ (ω – частота осциллятора), что значительно упрощает все выводы.

Изложение, достаточно подробное в начале этой части, становится все более конспективным в конце, что отчасти компенсируется подробными ссылками. Описание точных решений кинетических уравнений будет приведено в треть-

¹ В.М.Конторович. Часть І. Динамический подход. Радиофизика и радиоастрономия, **6**, №3, с. 165-211, 2001, далее І.

² Сохраняется непрерывная нумерация разделов и ссылок на литературу вместе с первой частью обзора.

ей части обзора. Точным методам посвящены Приложения, в которых обсуждается теоретико-групповая структура используемого подхода и выход за рамки кинетических уравнений при поиске степенных решений.

9. Кинетические уравнения

В первой части обзора [21а] мы видели, что взаимодействие волн во многом напоминает взаимодействие частиц. Эта аналогия еще более усилится, если мы рассмотрим не волны, а волнение, т.е. систему из большого числа волн со случайными фазами, напоминающую турбулентность. Но в отличие от классической турбулентности (в несжимаемой жидкости, где речь идет о вихрях) в случае волнения мы имеем дело с совокупностью (ансамблем) волновых пакетов, которые благодаря дисперсии движутся с различными скоростями, из-за чего их перекрытие оказывается весьма непродолжительным во времени, и результирующее взаимодействие оказывается слабым. В этой связи говорят о слабой турбулентности, описание которой оказывается аналогичным кинетическому описанию слабо неидеального газа.

Характерная для слабой турбулентности малость энергии взаимодействия по сравнению с полной энергией волнения позволяет использовать теорию возмущений и описывать турбулентность с помощью замкнутых систем кинетических уравнений для функций распределения.

Роль функции распределения играет величина, пропорциональная среднему квадрату амплитуды волны с волновым вектором **k** (скобки означают усреднение по фазам волн):

$$N_{\mathbf{k}} = \left\langle a_{\mathbf{k}}^* a_{\mathbf{k}} \right\rangle \tag{9.1}$$

(при дискретном наборе волновых векторов **k**). Действительно, в этом случае средняя энергия, вычисляемая по квадратичной части гамильтониана (т.е. без учета энергии взаимодействия волн) есть

$$\mathsf{E} = \sum_{\mathbf{k}} \omega_{\mathbf{k}} \langle a_{\mathbf{k}}^* a_{\mathbf{k}} \rangle. \tag{9.2}$$

Эта величина имеет вид энергии идеального газа с функцией распределения (9.1), где N_k играет роль числа частиц с «импульсом» k, а частота волны ω_k играет роль их энергии.

Нетрудно убедиться в том, что при непрерывном спектре связь между коррелятором (комплексных) нормальных координат и функцией распределения принимает вид

$$\langle a_{\mathbf{k}}^* a_{\mathbf{k}'} \rangle = N_{\mathbf{k}} \delta(\mathbf{k} - \mathbf{k}'),$$
(9.3)

где δ - функция выражает однородность системы, а суммирование заменяется интегрированием.

Кинетическое уравнение (КУ)

$$\dot{N}_{k} - I_{cm} \{ N_{k} \} = 0 \tag{9.3'}$$

представляет собой уравнение баланса частиц в фазовом пространстве. Взаимодействие учитывается интегралом столкновений $I_{cm}\{N\}$, вид которого определяется наиболее вероятными процессами, допускаемыми законами сохранения энергии, импульса (а если число волн-частиц сохраня-

ется, то и числа волн). КУ могут быть получены непосредственно из уравнения движения. Вывод этот несколько громоздок. Между тем простой физический смысл КУ в терминах частиц позволяет его выписать непосредственно (используя квантовые представления [21b], когда речь зайдет об аналогии с волнами).

Рассмотрим вначале классическое КУ Больцмана, учитывающее парные столкновения между частицами. В отсутствие столкновений функция распределения $f(\mathbf{r}, \mathbf{p}, t)$, описывающая газ частиц без внутренних степеней свободы, сохраняется вдоль траекторий частиц в фазовом (\mathbf{r}, \mathbf{p}) - пространстве. Это означает, что полная (стоксова) производная от $f(\mathbf{r}(t), \mathbf{p}(t), t)$, где $\mathbf{r}(t)$ и $\mathbf{p}(t)$ определяются (гамильтоновыми) уравнениями движения частицы ($\dot{\mathbf{r}} = \mathbf{v}, \dot{\mathbf{p}} = \mathbf{F}$, где \mathbf{v} – скорость частицы, а \mathbf{F} – действующая на нее сила), равна нулю:

$$\frac{Df}{Dt} \equiv \frac{\partial f}{\partial t} + \dot{\mathbf{r}} \frac{\partial f}{\partial \mathbf{r}} + \dot{\mathbf{p}} \frac{\partial f}{\partial \mathbf{p}} = 0.$$
(9.4)

Учет столкновений приводит к тому, что вместо нуля в правой части (9.4) возникает некоторый функционал

$$\frac{Df}{Dt} = \left(\frac{\partial f}{\partial t}\right)_{cm} \equiv I_{cm}\left\{f\right\},\tag{9.5}$$

где скорость изменения функции распределения за счет столкновений выписывается из простых вероятных соображений. А именно, считаем сталкивающимися две частицы, у которых в данный момент t оказались близкими их координаты $\mathbf{r}_{1,2} \approx \mathbf{r}$. Вероятность столкновения найдем как вероятность двух независимых событий оказаться каждому из партнеров «в одной точке» \mathbf{r} с импульсами \mathbf{p} и \mathbf{p}_1 :

$$f(\mathbf{r},\mathbf{p},t)f(\mathbf{r},\mathbf{p}_1,t)d\mathbf{p}\,d\mathbf{p}_1.$$
(9.6)

Так как прицельное расстояние у сталкивающихся частиц при этом не фиксируется и может быть произвольным, то результат столкновения записывается также в вероятностных терминах. А именно, процессу рассеяния соответствует вероятность

$$w(\mathbf{p},\mathbf{p}_1 / \mathbf{p}',\mathbf{p}_1') ff_1 d\mathbf{p} d\mathbf{p}_1 d\mathbf{p}' d\mathbf{p}_1', \qquad (9.7)$$

где $f = f(\mathbf{r}, \mathbf{p}, t)$, $f_1 = f(\mathbf{r}, \mathbf{p}_1, t)$, а *w* - условная вероятность (в единицу времени) перехода из исходного состояния \mathbf{p}, \mathbf{p}_1 в конечное $\mathbf{p}', \mathbf{p}'_1$. (Разумеется, это отвечает некоторому определенному расстоянию в динамике взаимодействия).

Учитывая, что в силу симметрии относительно обращения времени обратному процессу соответствует та же вероятность w, а вероятность соударения при этом равна f'_1f' , получаем для полного баланса приходов и уходов в данный элемент фазового объема:

$$I_{cm} = \int d\tau \left(ff_1' - ff_1 \right) w, \quad d\tau = d\mathbf{p}_1 d\mathbf{p}' d\mathbf{p}'_1.$$
(9.8)

Это и есть интеграл столкновений Больцмана. Равновесное распределение

$$f_0 = A e^{-\frac{\varepsilon}{T}} \tag{9.9}$$

обращает его в нуль в силу того, что f_0 должно являться решением КУ, а стоксова производная в пространственно однородном случае (а также в потенциальном внешнем поле, если ε включает соответствующую потенциальную энергию) зануляется равновесным распределением f_0 . (Температура T (в энергетических единицах) и нормировочная константа A параметризуют распределение). Это рассуждение можно обратить и использовать для нахождения f_0 как решения, обращающего в нуль интеграл столкновений (ИС). Впоследствии подобный подход будет использован для нахождения стационарных, но неравновесных распределений, обращающих ИС в нуль при других условиях в нуле и на бесконечности по энергии.

Учтем, что в силу выполнения законов сохранения энергии (упругие столкновения) и импульса, вероятность перехода содержит соответствующие *δ* - функции

$$w_{\mathbf{p}\mathbf{p}_{1}/\mathbf{p}'\mathbf{p}'_{1}} = U_{\mathbf{p}\mathbf{p}_{1}/\mathbf{p}'\mathbf{p}'_{1}}\delta(\mathbf{p}+\mathbf{p}_{1}-\mathbf{p}'_{1}-\mathbf{p}')\delta(\varepsilon+\varepsilon_{1}-\varepsilon'-\varepsilon_{1}').$$
(9.10)

Благодаря этому, распределение f_0 вида (9.9) очевидно зануляет ИС:

$$A^{2}\left(e^{-\frac{\varepsilon+\varepsilon_{1}}{T}}-e^{-\frac{\varepsilon'+\varepsilon_{1}}{T}}\right)\delta(\varepsilon+\varepsilon_{1}-\varepsilon'-\varepsilon_{1}')=0.$$

Прежде чем перейти к волнам, рассмотрим квантовое обобщение ИС Больцмана для фермичастиц (например, электронов). В силу принципа Паули, который запрещает находиться в одном и том же состоянии двум электронам, вместо (9.7) запишем (опуская здесь индексы у *w*)

$$w \cdot ff_1 \cdot (1 - f')(1 - f_1'), \qquad (9.11)$$

где два последних множителя представляют собой вероятности иметь конечное состояние свободным. Такая запись предполагает вполне определенную нормировку распределения, а также фиксированное значение спина, который для нас не существенен. Для независящего от спина распределения появится просто дополнительный множитель 2 (результат суммирования по спинам), который мы можем включить в вероятность *w*.

В итоге ИС приобретает вид

$$I_{cm}^{\phi} = \int d\tau \, w \cdot \left\{ f_{f_1}^{f_1'} (1 - f_1) (1 - f_1) - f_{f_1} (1 - f') (1 - f_1') \right\}.$$
(9.12)

Непосредственной подстановкой проверяем, что равновесное фермиевское распределение

$$f_0^{\phi} = \frac{1}{e^{\frac{\varepsilon - \mu}{T}} + 1}, \quad 1 - f_0^{\phi} = \frac{e^{\frac{\varepsilon - \mu}{T}}}{e^{\frac{\varepsilon - \mu}{T}} + 1}$$
(9.13)

(нормировка достигается за счет химического потенциала μ) обращает в нуль I^{ϕ}_{cm} :

$$\{\ldots\}\delta(\varepsilon+\varepsilon_{1}-\varepsilon'-\varepsilon_{1}')=e^{-\frac{2\mu}{T}}\frac{\left(e^{\frac{\varepsilon+\varepsilon_{1}}{T}}-e^{\frac{\varepsilon'+\varepsilon_{1}'}{T}}\right)\delta(\varepsilon+\varepsilon_{1}-\varepsilon'-\varepsilon_{1}')}{\left(e^{\frac{\varepsilon-\mu}{T}}+1\right)\left(e^{\frac{\varepsilon_{1}-\mu}{T}}+1\right)\left(e^{\frac{\varepsilon'-\mu}{T}}+1\right)\left(e^{\frac{\varepsilon'-\mu}{T}}+1\right)}=0.$$
(9.14)

Для волн (которые являются Бозе-частицами с квантово-механической точки зрения) при написании КУ вместо принципа Паули необходимо учесть открытое Эйнштейном вынужденное излучение. А именно, вероятность перехода в конечное состояние складывается из двух слагаемых: спонтанного и вынужденного, причем последнее пропорционально числу волн (частиц) в конечном состоянии. Именно этот эффект ответственен за феномен лазера (или мазера), который кстати был создан (а еще позже обнаружен в естественных условиях в космосе) на полвека позднее открытия Эйнштейна. При соответствующей (квантовой) нормировке это означает, что ИС для бозечастиц будет иметь вид:

$$I_{cm}^{E} = \int d\tau \, w \Big\{ f f_{1}'(1+f)(1+f_{1}) - f f_{1}(1+f')(1+f_{1}') \Big\}.$$
(9.15)

Равновесное распределение есть

$$f_0^{\ B} = \frac{1}{e^{\frac{\varepsilon - \mu}{T}} - 1}, \quad 1 + f_0^{\ B} = \frac{e^{\frac{\varepsilon - \mu}{T}}}{e^{\frac{\varepsilon - \mu}{T}} - 1}.$$
(9.16)

Переход к классическим частицам в обоих случаях означает, что при квантовой нормировке вероятность найти частицу в данном состоянии мала $f \ll 1$. При этом оба распределения (9.13) и (9.16) переходят в (9.8). Переход же к волнам для (9.16) означает, что $f^{E} \equiv N \gg 1$. При этом I_{cm}^{E} переходит в I_{cm} (для процессов рассеяния):

$$I_{cm} = \int d\tau w \left\{ N'N_1'N + NN_1'N_1 - NN_1N' - NN_1N_1' \right\},$$

$$w = U\delta \left(\mathbf{k} + \mathbf{k}_1 - \mathbf{k}_2 - \mathbf{k}_3 \right) \delta \left(\omega + \omega_1 - \omega_2 - \omega_3 \right).$$
(9.17)

В силу однородности этого выражения по *N* нормировка здесь уже может выбираться классическим способом.

Выражение (9.17) соответствует нераспадному закону дисперсии волн. Нетрудно понять, что распадные процессы (распады и слияния волн) приведут аналогичным образом к интегралу столкновений:

$$I_{cr} = \int d\tau w \{ N_1 N_2 - N N_1 - N N_2 \} - cycle - bicycle,$$

$$w_{\mathbf{k}/\mathbf{k}_1\mathbf{k}_2} = U_{\mathbf{k}/\mathbf{k}_1\mathbf{k}_2} \delta(\mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}) \delta(\omega_1 + \omega_2 - \omega), d\tau = d\mathbf{k}_1 d\mathbf{k}_2,$$
(9.18)

где *cycle* означает циклическую перестановку индексов в функциях распределения и вероятности перехода. К анализу следствий, вытекающих из КУ для волн (и частиц) мы вернемся ниже.

10. Слабая турбулентность

Турбулентность возникает в результате развития неустойчивостей ламинарного движения и характеризуется возбуждением большого числа степеней свободы. В несжимаемой жидкости – это набор сильно взаимодействующих между собой вихрей. В такой среде как плазма могут возбуждаться самые различные типы волн (лэнгмюровские, ионнозвуковые, альфеновские и т.п.), причем, в отличие от вихрей в жидкости, волны в плазме обладают существенной дисперсией скоростей распространения. Благодаря этому их взаимодействие может быть достаточно слабым. Такое состояние принято называть слаботурбулентным. Оно может осуществляться и в гидродинамике и хорошо всем знакомо по движениям взволнованной поверхности моря (слабой турбулентности соответствует волнение без образования «барашков»).

В этих условиях хорошо определенными объектами становятся волновые пакеты – квазичастицы, динамика которых определяется их законом дисперсии $\omega(\mathbf{k})$. Такую систему, благодаря слабой связи между волновыми пакетами, удобно рассматривать как слабо неидеальный газ, взаимодействие в котором носит характер столкновений, а их можно описывать с помощью КУ для функции распределения. В ряде случаев удается найти точные стационарные решения этого уравнения, соответствующие колмогоровским распределениям с постоянными потоками (энергии, импульса, квазичастиц) по спектру турбулентности и тем самым получить достаточно полное статистическое описание.

При постановке задачи о турбулентном распределении в КУ (9.3') необходимо ввести источник D_k и сток Γ_k :

$$\dot{N}_{\mathbf{k}} - I_{cm} \left\{ N_{\mathbf{k}} \right\} = D_{\mathbf{k}} - \Gamma_{\mathbf{k}}.$$

$$(10.1)$$

Источник может быть связан с инкрементом γ_k неустойчивости $D_k = \gamma_k N_k$, сток – с конечным временем жизни квазичастиц, например, из-за молекулярной вязкости ($\Gamma_k = 2\nu k^2 N_k$). Существенно, что источник и сток предполагаются значительно разнесенными в **k**-пространстве, благодаря чему возникает поток энергии из области источника в область стока. (Возможно возникновение потоков других сохраняющихся величин: числа квазичастиц при нераспадном законе дисперсии, импульса в анизотропных распределениях, энстрофии в двумерной системе [23c] и т.д.).

В инерционном интервале, расположенном между областями источника и стока, определяющими являются нелинейные взаимодействия волн, и главным членом КУ становится интеграл столкновений. При этом для стационарного распределения уравнение принимает вид

$$I_{cm}\{N_{k}\} = 0. (10.2)$$

Источник и сток можно считать находящимися в нуле и на бесконечности. Они играют роль граничных условий, отбирая решения КУ, соответствующие постоянству потока через инерционный интервал. С этой точки зрения решения представляют собой промежуточные асимптотики [21d]. Величина потока определяется мощностью источника. Постоянство потока является очевидным следствием КУ. Например, для потока энергии P имеем (α – размерность **k** -пространства)

$$\frac{\partial P}{\partial k} = -k^{\alpha - 1} \omega_k I_{cm} \{ N_k \} = 0$$
(10.3)

в соответствии с уравнением непрерывности для энергии: $\dot{E}_k + \partial P/\partial k = 0$, $E(k) = k^{\alpha-1}\omega_k N_k$. Решению N_k уравнения $I_{cr} \{N_k\} = 0$ соответствует P = const. Разумеется, кинетическое уравнение описывает не только существенно неравновесные турбулентные состояния, но и состояния, близкие к тепловому равновесию. При этом источник и сток отсутствуют и равновесным решениям уравнения (10.2) отвечает поток, равный нулю.

Выяснить физический смысл решения (а иногда и получить его) можно, используя соображения размерности.

Обратимся к выражению для энергии (9.2) (удобно отнести ее к единице массы, разделив на плотность среды ρ)

$$\frac{\mathrm{E}}{\rho} = \int d\mathbf{k} \,\omega_{\mathbf{k}} \left\langle a_{\mathbf{k}}^* a_{\mathbf{k}} \right\rangle. \tag{10.4}$$

Тогда, учитывая определение N_k , имеем

$$\frac{\mathsf{E}}{(2\pi)^{\alpha}\,\rho L^{\alpha}} = \int d\mathbf{k}\,\omega_{\mathbf{k}}N_{\mathbf{k}} = \int dk\,E(k) = \int d\omega\,E(\omega),\tag{10.5}$$

где E(k) и $E(\omega)$ спектральные плотности энергии в пространстве волновых чисел и частот соответственно, L – размер системы. Отсюда следуют размерности (l – длина, t – время):

$$[N] = l^{5}t^{-1}, \quad [E(k)] = l^{6-\alpha}t^{-2}, \quad [E(\omega)] = l^{5-\alpha}t^{-1}, \quad [P] = l^{5-\alpha}t^{-3}, \quad (10.5)$$

размерность *P* определяется уравнением непрерывности. Если в задаче отсутствуют характерные времена и длины (мы для краткости ниже будем говорить при этом о полной автомодельности), то единственная величина размерности длины есть k^{-1} , а времени ω^{-1} .

Напомним, как из соображений размерности получается спектр турбулентности несжимаемой жидкости. У вихрей собственные частоты равны нулю. Поэтому спектральная плотность E(k) должна быть построена лишь из потока P и волнового числа k (в силу локальности): $E(k) = P^a k^b$. Отсюда, сравнивая размерности и находя отсюда значения коэффициентов a и b, получаем спектр Обухова-Колмогорова

$$E(k) = P^{\frac{2}{3}} k^{-\frac{5}{3}}.$$
 (10.6)

В случае волновой турбулентности одних соображений размерности недостаточно, так как здесь мы имеем дело с системой распространяющихся волн и кроме волнового числа есть еще один параметр – их скорость (или частота). Однако, в случае слабой турбулентности справедливо КУ, из которого вытекает связь между N и P. Для распадного спектра, когда $I_{\rm cr}^{pacn} \propto N^2$, отсюда следует $N \propto P^{\frac{1}{2}}$. Остается определить зависимость N от k и ω , а здесь уже соображений размерности оказывается достаточно: $N_{\bf k}^{pacn} = P^{\frac{1}{2}} \omega^a k^b$. Получаем, таким образом,

$$N^{\text{pacn}} = P^{\frac{1}{2}} \omega^{-\frac{1}{2}} k^{-\frac{\alpha+5}{2}}.$$
 (10.7)

Для капиллярных волн на глубокой воде $\omega = k^{\frac{3}{2}}$, $\alpha = 2$, откуда (10.7) приводит к спектру Захарова и Филоненко $N_{\rm k} = P^{\frac{1}{2}} k^{-\frac{17}{4}}$ [8a].

Рассмотрим теперь нераспадный спектр (например, гравитационные волны на глубокой воде³). При этом есть новая сохраняющаяся величина – число частиц. Поэтому наряду с решениями, в которых сохраняется поток энергии, возможны решения КУ, в которых сохраняется поток частиц по спектру [2d].

При полной автомодельности в случае постоянного потока энергии из соображений размерности имеем

$$N_{\mathbf{k}}^{\text{hepach}} = P^{\frac{1}{3}} k^{-\frac{\alpha+10}{3}}.$$
 (10.8)

Для гравитационных волн на глубокой воде ($\alpha = 2$) получаем спектр Захарова и Филоненко $N = P^{\frac{1}{3}}k^{-4}$ [8а]. Решение с постоянным потоком частиц Q [2d] получается отсюда заменой P на $Q\omega_k$:

$$N^{hepacn} = Q^{\frac{1}{3}} \omega_k^{\frac{1}{3}} k^{-\frac{\alpha+10}{3}}.$$
 (10.9)

Степень 1/3, в которой входит поток, определяется видом интеграла столкновений КУ $(P, Q \propto I_{cr} \{N\} \propto N^3).$

Для интерпретаций распределений необходимо рассматривать плотности потоков в \mathbf{k} -пространстве. Здесь весьма удобной оказывается электростатическая аналогия. Введем плотность потока энергии $\mathbf{q}(\mathbf{k})$ равенством

$$\operatorname{div}_{\mathbf{k}} \mathbf{q}(\mathbf{k}) = -\omega_{\mathbf{k}} I_{\mathrm{cr}} \{N_{\mathbf{k}}\}.$$
(10.10)

Из КУ в стационарном случае следует тогда

³ КУ с источниками и стоками для гравитационных волн на поверхности жидкости впервые рассматривалось К.Хассельманом [21e]. Современному состоянию вопроса посвящены обзоры [22].

$$\operatorname{div} \mathbf{q}(\mathbf{k}) = \tilde{D}_{\mathbf{k}},\tag{10.11}$$

где $\tilde{D}_{\mathbf{k}}$ – источник (сток) энергии, локализованный вблизи начала координат в **k**-пространстве. В инерционном интервале (большие расстояния от источника и стока) играют роль лишь его низшие мультипольные моменты. Если считать rot $\mathbf{q} = 0$, то \mathbf{q} играет роль поля, а $\tilde{D}/4\pi = \rho(\mathbf{k})$ – плотности заряда. Точечный заряд *P* в начале координат ($\rho = P\delta(\mathbf{k})$) согласно теореме Гаусса порождает постоянный поток (энергии). Для плотности потока справедлив закон, аналогичный закону Кулона. Диполь **d** приводит к постоянному потоку импульса. Потоку частиц соответствует свой «заряд» *Q* в начале координат. Эти распределения могут быть найдены не только из соображений размерности, но и как точные решения КУ, что является существенным результатом теории слабой турбулентности (см. Приложение III и работы [2,8]), и будут подробно рассмотрены в третьей части обзора.

11. Взаимосвязь равновесных и потоковых слаботурбулентных распределений

Идеи (слабой или волновой) колмогоровской турбулентности были распространены на новые объекты [23а], и это привело к результатам важным для понимания структуры самих слаботурбулентных потоковых спектров. Мы ограничимся изотропными спектрами⁴, как ввиду их простоты, так и той роли, которую они играют в астрофизических приложениях. В примерах из гидродинамики (волнение на поверхности жидкости) и физики плазмы (ленгмюровская турбулентность) квазичастицы представляли собой волновые пакеты, и речь шла о взаимодействии волна волна, которое для нераспадного спектра сводилось к рассеянию. Сохранение, наряду с энергией, числа волн (волнового действия) приводило к двум различным степенным турбулентным спектрам, один из которых соответствовал потоку энергии, а другой — потоку числа квазичастиц через инерционный интервал [2, 8]. Оба этих спектра находились как решения, обращающие в нуль ИС (наряду с равновесным распределением). Этот же подход был распространен на плазменные системы со взаимодействием волна-частица. Связанная система КУ содержит при этом ИС, попрежнему имеющие структуру (9.12), (9.15), причем для частиц в выражении $f^{кn}$ при фермиевской статистике возникают множители (1—*n*) вместо множителей (1+*N*) для волн. В классическом пределе (*n* ≪1) имеем

$$f_{\mathbf{k}\mathbf{p}\,|\,\mathbf{k}'\mathbf{p}'} = \left(N_{\mathbf{k}} + 1\right)N_{\mathbf{k}'}n_{\mathbf{p}'} - N_{\mathbf{k}}\left(N_{\mathbf{k}'} + 1\right)n_{\mathbf{p}}.$$
(11.1)

⁴ Дрейфовые отклонения от изотропных распределений см. в [8d]. Слабая турбулентность волн в замагниченной плазме (с учетом возникающей анизотропии) рассмотрена в [23b].

Стационарные решения системы КУ приводят к степенным спектрам как для волн, так и для частиц ⁵ (при наличии потока по их спектру). Рассматривались с этой точки зрения и процессы томсоновского и комптоновского рассеяния. Наконец, колмогоровские спектры частиц обсуждались для взаимодействия частица - частица [23d]. В частности, были получены степенные распределения частиц, которые формируются за счет обычных кулоновских соударений в отсутствие взаимодействия с волнами и, более того, способствуют затуханию волновых движений и расширению области существенно «столкновительной» плазмы. Здесь физическая картина уже очень далека от гидродинамической турбулентности, но формальная аналогия в духе слабой турбулентности полностью сохраняется. Остается справедливым и выражение для слаботурбулентных потоковых распределений. При этом в силу $n \ll 1$ для частиц следует $f_{pp,|p_2p_3} = n_2n_3 - nn_1$. Степенные распределения частиц прежде всего сказываются на тех свойствах среды, которые чувствительны к наличию быстрых частиц: затухание Ландау, скорости ядерных реакций, критерий Лоусона и т. п. Однако в подобных вопросах важна уже структура распределения при значительной доле тепловых частиц. Она выяснена на более простом примере спектра, формируемого томсоновским рассеянием, когда КУ носит дифференциальный характер (см. ниже).

Распределения с потоком и температурой (на примере взаимодействия электронов и излучения). Существование равновесных и турбулентных стационарных решений у КУ поставило вопрос о том, каким должно быть распределение при совместном воздействии термостата, формирующего равновесный, и источника, формирующего турбулентный спектр. Достаточно простой и важный пример излучения, рассеиваемого равновесными нерелятивистскими электронами (играющими роль термостата с температурой T_e), при наличии потока от источника фотонов позволяет провести аналитическое исследование задачи. Оказывается, что одновременное наличие потока и температуры приводит к формированию единого распределения, вид которого существенно зависит от соотношения между потоками и температурой [23e]. Типичным для него является возникновение промежуточной асимптотики [21c], существенно искажающей «хвосты» распределения при самых малых потоках. При нерелятивистских энергиях электронов изменение частоты фотона при рассеянии мало ($\Delta \omega / \omega \sim V/c \ll 1$), так что фотонное КУ из интегрального становится дифференциальным. Соответствующее уравнение Компанейца [23f] для $N \equiv N_e$ имеет вид

$$\dot{N} = -\frac{1}{\nu^2} \frac{\partial}{\partial \nu} q(\nu), \quad q(\nu) = -\xi \nu^4 \left[\frac{T_e}{h} \frac{\partial N}{\partial \nu} + N(1+N) \right].$$
(11.2)

⁵ Степенные спектры нейтронов, соответствующие постоянному потоку частиц по спектру, обсуждались Ахиезером и Померанчуком еще в 1948 г. [23с], причем рассматривалось рассеяние нейтронов на ядрах, описываемое КУ.

Здесь q — поток фотонов в пространстве частот $v = \omega/2\pi$, h — постоянная Планка, коэффициент ξ определяется через томсоновское сечение σ и концентрацию электронов n. Член с N^2 описывает индуцированные, остальные — спонтанные процессы. Рассмотрим стационарное состояние, соответствующее постоянному отрицательному потоку $q \equiv -\xi(\overline{v})^4$. Оно описывается уравнением

$$\frac{T_e}{h}\frac{\partial N}{\partial \nu} + N^2 + N = \left(\frac{\overline{\nu}}{\nu}\right)^4,\tag{11.3}$$

из которого видно, что единственным параметром является отношение корня четвертой степени из потока к температуре $\zeta \equiv h\overline{\nu}/T_e$. При малом потоке ($\zeta \ll 1$) решение имеет вид слабовозмущенного планковского распределения, от которого отрастают в области малых [23f] и больших [23e] частот степенные хвосты (см. рис.1):

$$N_{k} \simeq \left(\overline{\nu}/\nu\right)^{2} + T_{e}/h\nu\left(\nu \leq \zeta\overline{\nu}\right); \quad N_{k} \simeq \left(\overline{\nu}/\nu\right)^{4} + e^{-h\nu/T_{e}}\left(\nu \geq T_{e}\ln\left(1/\zeta\right)\right). \tag{11.4}$$

(Полное решение см. в [23е].) При этом область частот, занимаемая степенными асимптотиками, существенно зависит от величины потока. С ростом потока она также растет, и при большом значении потока эти асимптотики смыкаются, «съедая» равновесную часть распределения. Образуется бистепенной спектр, который следует из (11.3) при $T_e \rightarrow 0$:

$$N_{k} = \frac{1}{2} \left[\sqrt{1 + 4(\bar{\nu}/\nu)^{4}} - 1 \right], \quad (T_{e} \ll h\bar{\nu}).$$
(11.4)

Бистепенной вид спектра связан с одновременным учетом как спонтанных, так и индуцированных процессов. Распределение (11.4) является нормируемым, соответствующее ему полное число фотонов конечно. Каждая из степенных асимптотик может быть найдена независимо с использованием свойств симметрии КУ. В этой связи рассмотренный пример решения уравнения Компанейца интересен и для теории турбулентности, так как наглядно демонстрирует, как степенные асимптотики входят в полное решение. Рассеяние частиц на излучении при наличии потока может формировать и степенные спектры релятивистских частиц, обсуждавшиеся в связи с проблемой объяснения степенных спектров космических лучей. Для релятивистских электронов с распределением по импульсам n_p возникает степенная асимптотика с индексом $\gamma = 2$ в дифференциальном пространственном потоке частиц $c \cdot n_p d^3 p / d\varepsilon \sim \varepsilon^{-\gamma}$. Заметим, что комптоновский спектр электронов с $\gamma = 2$ является весьма универсальным — он получается без каких-либо специальных предположений о виде фотонного спектра [23g]. В частности, он может устанавливаться за счет рассеяния на реликтовом излучении.

Плазменный турбулентный реактор (ПТР) — пример турбулентной системы с потоком по спектру. Под ПТР понимают систему релятивистских электронов с энергиями $\varepsilon \gg mc^2$ и излучения, рассеиваемых и удерживаемых турбулентной плазмой. Процессом, определяющим распределения электронов и фотонов, является рассеяние с превращением плазменного колебания частоты ω_0 в поперечную электромагнитную волну с частотой $\omega \sim \omega_0 (\varepsilon/mc^2)^2$. Плазменная турбулентность является заданной и играет роль некоторого статистически однородного и стационарного внешнего поля, разрешающего основной процесс рассеяния. Уравнения ПТР получаются разложением КУ вида (9.12), (9.15) по малой передаче электронного импульса при рассеянии с учетом доплеровского преобразования частоты и содержат усредненную вероятность перехода *u*, зависящую лишь от отношения ω/ε^2 , где ω измеряется в единицах ω_0 , а энергия в единицах mc^2 . Так как рассматривается один и тот же процесс, то каждое из КУ для распределения фотонов N_k и электронов n_p содержит одну и ту же комбинацию функций распределения $\omega N \partial n / \partial \varepsilon + n$, умноженную на $u(\omega/\varepsilon^2)$ и плотность электронных состояний ε^2 . Величина *u* пропорциональна энергии плазменной турбулентности. Т.о. уравнения ПТР имеют вид [23h]

$$\dot{n}_{p} = \frac{1}{\varepsilon^{2}} \frac{\partial}{\partial \varepsilon} \int_{0}^{\infty} d\omega S(\omega, \varepsilon); \quad \dot{N}_{k} = \frac{1}{\omega^{3}} \int_{0}^{\infty} d\omega S(\omega, \varepsilon); \quad S(\omega, \varepsilon) = \varepsilon^{2} u(\omega/\varepsilon^{2})(\omega N \partial n/\partial \varepsilon + n). \quad (11.6)$$

Эти уравнения допускают два стационарных степенных решения. Одно из них, выраженное через индексы $\varepsilon^2 n_p \sim \varepsilon^{-\gamma}$ и $\omega^3 N \sim \omega^{-\alpha}$, соответствует $\gamma = 2$ и $\alpha = -5/2$, другое — индексам $\gamma = 3$ и $\alpha = -5/2$. Первое из них соответствует постоянному потоку числа релятивистских электронов [23h, i], направленному в сторону больших энергий, а второе представляет собой решение с постоянным потоком энергии по спектру как электронов, так и фотонов, причем суммарный поток направлен в сторону малых энергий [23i]. Не останавливаясь на астрофизической стороне дела [23h], отметим, что потоки в ПТР должны создаваться источниками, сторонними по отношению к турбулентной плазме. Скорее всего, при этом должны формироваться неоднопотоковые спектры [23a].

Направление потоков по спектру и нормировка распределений. Различные турбулентные решения требуют для своей реализации определенного расположения источников в соответствии со знаками потоков. Определение направления потоков на степенных спектрах может быть произведено в общем виде [8f]. При этом удобно использовать выражение для потока частиц $Q = J_0$ через производную по показателю степени от интеграла столкновений [23k] и аналогичное условие для потока энергии $P=J_1$. Анализ существенно упрощается, если воспользоваться конформной симметрией и перейти к факторизованной форме записи I_{ct} на степенных распределениях. Соотношение между потоком и спектром вида $N_{\text{турб}}^{(i)} = A_i \omega^{s_i}$ (i = 0 или 1 в зависимости от сохранения потока частиц или энергии) для процесса рассеяния вида $\omega + \omega_1 \rightleftharpoons \omega_2 + \omega_3$, приобретает вид:

$$J_{i} = \frac{A_{i}^{3}}{4\beta} \int d\tau \cdot w \cdot \left(\omega \omega_{1} \omega_{2} \omega_{3}\right)^{s} \left[\omega^{-s} + \omega_{1}^{-s} - \omega_{2}^{-s} - \omega_{3}^{-s}\right] \times \left[\omega^{i} \ln \omega + \omega_{1}^{i} \ln \omega_{1} - \omega_{2}^{i} \ln \omega_{2} - \omega_{3}^{i} \ln \omega_{3}\right]_{s=s_{i}}.$$
 (11.7)

Здесь $d\tau = d\mathbf{k}_1 d\mathbf{k}_2 d\mathbf{k}_3$, *w* – вероятность рассеяния. Выяснить знак потоков с помощью этого выражения можно без фактического вычисления интегралов (разумеется, необходимого для вычисления нормирующего множителя c_i в связи $A_i = c_i |J_i|^{\frac{1}{3}}$). Результат определяется только индексами распределения *s* и степенью однородности закона дисперсии β : sign $J_0 = -\text{sign } \beta s_0(s_0 + 1)$; sign $J_1 = \text{sign } \beta s_1(s_1 + 1)$; $s_0 = s_1 + 1/3$. Знак потока меняется, если индекс проходит через значения s = 0, и -1, отвечающие степенным асимптотикам равновесного спектра волн $N_{\text{равн}} = T/(\omega + |\mu|)$. Направлены ли потоки энергии и числа волн в одну сторону или противоположны, определяется расположением значений индексов распределений s_0 и s_1 относительно указанных «критических» значений 0 и -1. Как правило, потоки могут быть направлены только в разные стороны, причем для $\beta > 0$ поток числа волн направлен в сторону длинных, а энергии – в сторону коротких волн. Для систем гидродинамического типа это отмечалось Захаровым и связано с «вымерзанием» взаимодействия при $\lambda \to \infty$, что приводит к значения s < -1. Аналогичный анализ для частиц, описываемых интегралом столкновений Больцмана, приводит к условиям sign $J_0 = -\text{sign } \beta s_0$, sign $J_1 = \text{sign } \beta s_1$; $s_0 = s_1 + 1/2$. Особым является случай активационного закона дисперсии.

Определение направления потока тесно связано с нормировкой турбулентных распределений, которые, как правило, не соответствуют конечным плотностям (числам частиц) или энергиям при растяжении инерционного интервала на всю полуось энергий (частот). Эти распределения допускают нормировку на поток по спектру, если на них сходятся сами интегралы столкновений (т. е. выполнено условие локальности). Прямые вычисления в простейших случаях (например, для акустической турбулентности [8с], для капиллярных волн на мелкой воде и др.) подтверждают, что безразмерный нормировочный коэффициент — порядка единицы. Для кулоновского спектра частиц с потоком энергии он обратно пропорционален кулоновскому логарифму [23k,m].

12. Кинетическое уравнение Смолуховского и слияния галактик.

Долгое время считалось, что после своего образования в результате развития гравитационной неустойчивости (из газового протогалактического облака), галактики эволюционируют сугубо индивидуально. Наблюдательные данные последних трех десятилетий, в особенности, данные космического телескопа Хаббла и крупнейших наземных телескопов, дают убедительные доказательства определяющей роли слияний в космогонии галактик. Выход обзоров Кенникута, Швейцера и Барнса [24а], посвященного взаимодействию и слиянию галактик и вызванному им индуцированному звездообразованию (около 1000 ссылок и более 200 иллюстраций!) позволяет опустить описание соответствующей библиографии и наблюдательных аргументов в пользу слияний.

Корреляция между активностью галактик и их взаимодействием и слияниями также является сейчас уже хорошо установленным наблюдательным фактом [24b,c, 9c]. Малая концентрация квазаров и радиогалактик позволяет возникать им даже за счет очень редких соударений или слияний. Активные галактики могут играть роль удобного маркера при исследовании вопроса о слияниях. Примером может служить обрыв в распределении квазаров при красных смещениях $z_{cr} \approx 2-3$, который может означать момент" сборки" массивных галактик из менее массивных блоков⁶, соответствующий "взрывной" эволюции, свойственной процессу слияния галактик (см. ниже).

Вероятность слияния галактик. Поскольку за неупругость столкновения, приводящую к слиянию, ответственны быстро убывающие приливные силы в бесстолкновительной звездной подсистеме галактик, для слияния необходимо их тесное сближение (вплоть до перекрытия). При большой относительной скорости галактики пройдут друг сквозь друга даже при полном пересечении. Сечение слияний используем в виде $\sigma = \pi (R_1 + R_2)^2 (1+\gamma) \varphi(\gamma)$, где $\gamma \equiv V_g^2/V^2$ – параметр фокусировки, а функция $\varphi(\gamma) \rightarrow 1$ при $\gamma \rightarrow \infty$; $\varphi(\gamma) \rightarrow 0$ при $\gamma \rightarrow 0$ и зависит от модели слияния. Простейший вариант критерия слияния: минимальное расстояние между сталкивающимися галактиками меньше суммы их радиусов ($R_1 + R_2$), а относительная скорость на бесконечности меньше скорости убегания V_g . Это приводит к следующему выражению (выписываем только зависимости от масс) для коэффициента коагуляции $U \equiv \overline{\sigma v}$, где черта означает усреднение по скоростям галактик:

$$U = \begin{cases} c_{1+\beta} \left(M_1 + M_2 \right) \left(M_1^{\beta} + M_2^{\beta} \right), & (большие массы) \\ c_2 \left(M_1 + M_2 \right)^2. & (малые массы) \end{cases}$$
(12.1)

Здесь радиус галактики R связан с её массой M соотношением $R = CM^{\beta}$ ($\beta = 1/3$ соответствует постоянной плотности, $\beta = 1/2$ – наблюдаемым законам Фабера-Джексона и Талли-Фишера). Для функции $U(M_1, M_2)$ удобно ввести ее степень однородности u и показатели $u_{1,2}$, описывающие ее асимптотики при сильно отличающихся массах: $U \propto M_1^{u_1}M_2^{u_2}$, $M_1 \ll M_2$, $u_1 + u_2 = u$.

⁶ Недавнее обнаружение в сверхглубоком поле Хаббла древних и в то же время массивных галактик может внести изменения в этот сценарий.

Очевидно, что для (12.1) $u_1 = 0$, а $u_2 = u = 2$ для $M \ll M_b$ и $1 + \beta$ для $M \gg M_b$, где M_b разделяет области больших и малых масс. Заметим, что именно параметры $u_{1,2}$ (т. е. асимптотики U) определяют асимптотики источника в уравнении для функции светимости (ФС) квазаров (см. ссылки в [24c]). Поскольку скрытая масса (темное вещество), также бесстолкновительна, в простейших схемах, по-видимому, можно не отделять темную материю от светящейся, если считать гало индивидуализированными для галактик.

Функция масс. Если массивные галактики преимущественно образуются в результате слияния менее массивных, то этот процесс отражает их распределение по массам [24d] – функция масс (ФМ). Вычислить такую функцию можно, например, если ограничиться парными слияниями, решив описывающее её уравнение Смолуховского (УС):

$$\frac{\partial f(M,t)}{\partial t} = \int dM_1 dM_2 \left[U_{12} \delta_M f_1 f_2 - cycle - bicycle \right] \quad . \tag{12.2}$$

Здесь $f_1 \equiv f(M_1,t)$ и т. д., $\delta_M \equiv \delta(M - M_1 - M_2)$ – дираковская δ -функция, выражающая закон сохранения массы при слияниях, U_{12} – коэффициент коагуляции (12.1). В случае обобщенного УС (см. ниже) мы будем считать выполняющимся также закон сохранения углового момента. Законы эти отнюдь не очевидны, но с удовлетворительной точностью подтверждаются численными экспериментами. Выход за эти рамки, как и за рамки КУ требует использования значительно более изощренного математического аппарата, который применительно к интересующему нас кругу задач еще только развивается (ср. [24e]). В то же время, как известно, КУ хорошо описывают ситуацию и шире формальных рамок применимости. Отметим, что между подходом Пресса и Шехтера [24f], использующим ренорм-групповую перенормировку масштаба, и кинетическим подходом также имеется связь. С точки зрения кинетики, в этом подходе описывается результат многих слияний ближайших соседей с вероятностью, не зависящей от масс.

"Взрывная" эволюция галактик. В случае галактик весьма существенной оказывается зависимость U от масс, которая приводит, в частности, к взрывной эволюции ФМ. Стокмайером было открыто применительно к полимеризации, а затем последовательно переоткрывалось в других областях физики [25] необычное поведение решения УС при u > 1. В этом случае в системе происходит нечто близкое к фазовому переходу: за конечное время (t_{cr}) устанавливается квазистепенное распределение $\Phi \propto M^{-\alpha}$ вплоть до формально бесконечных масс ("взрывная" эволюция). Достаточно подробное исследование взрывной эволюции в связи с образованием центральных массивных сD-галактик в группах, эпохой рождения квазаров, эффектом Бутчера–Эмлера «покраснения» галактик на определенных красных смещениях и т.п. было проведено в работах римской и харьковской групп [26]. В системе N_o галактик с массами M_0 это

время равно⁷ $t_{cr} = \xi_u / (c_u N_0 M_0^u)$, где соответственно $\xi_u = 0.002, 0.26, 0.1$ для u = 2, 4/3, 3/2. Появление при этом относительно крутой промежуточной асимптотики ($\alpha \approx 2$) легко может быть понято из следующих аргументов. Оба полученные численно значения для индексов ($\alpha \sim 1.9$ для u = 4/3 и $\alpha \sim 2.1$ для u = 3/2) находятся между (u + 2)/2 и (u + 3)/2. ФМ с $\alpha = (u + 3)/2$ соответствует постоянному потоку массы вдоль спектра масс до бесконечности, то есть к cDгалактике в нашем случае. (Решения с постоянным потоком сохраняющейся величины аналогично колмогоровским спектрам в теории слабой турбулентности). Однако, благодаря нелокальности распределений с u > 1 (расходимость интеграла в УС на степенном распределении) такое решение не реализуется точно в обоих наших случаях. Нелокальность приводит к существенной роли взаимодействий между галактиками малых и больших масс. При этом число массивных галактик приблизительно сохраняется и постоянный поток их числа по спектру соответствует $\Phi M c \alpha = (u + u)$ 2) /2. В итоге индекс спектра ФМ (как можно видеть из численного решения УС) расположен между этими значениями: $1.67 < \alpha \approx 1.9 < 2.17$ (u = 4/3), $1.75 < \alpha \approx 2.1 < 2.25$ (u = 3/2) и весьма близок к их среднему арифметическому. Мы ограничились здесь обсуждением случая больших масс. При малых массах u = 2 и нелокальность еще существенней. В этом случае естественной является попытка перехода к дифференциальному уравнению от интегрального, что было предпринято в [26b] и [26е].

Интерес к распределению галактик по моментам определяется формированием различных морфологических типов при слияниях, но этим не ограничивается: слияния приводят к возникновению активности галактических ядер. Один из способов описания этого грандиозного феномена, включающего ультраяркие ИК галактики, радиогалактики и квазары, состоит в учете компенсации момента при слиянии (см.[26a, 27]). Найти распределение по массам и моментам f(M, S), устанавливающееся в результате слияний галактик, можно найти, решив обобщенное УС для f(M, S) [26]. Аналитически это возможно сделать лишь при весьма упрощающих допущениях. В частности, в т. н. анизотропной модели распределение f(M, S) факторизовано и имеет вид произведения ФМ на острую функцию от моментов. Отказавшись от упрощений, приходится прибегать к численным методам, в частности, к моделированию с помощью метода Монте-Карло [9е]. Оказывается, что в системе сливающихся галактик происходит аналог кинетического фазового перехода Стокмайера. Система разделяется на две фазы: гигантскую галактику, в которой заключена макроскопическая часть массы и много мелких галактик. Возникающую гигантскую галактику можно отождествить с реальными сD-галактиками в центрах групп и скоплений. Среди мелких большинство составляют галактики, ни разу не испытавшие слияния. ΦM , полученная в результате численного модели-

⁷ В этой формуле в оригинальном тексте опечатка: пропущена степень у массы.

рования (рис.2), находится в хорошем согласии с функцией, полученной прямым решением уравнения Смолуховского [9, 25, 26]. Вследствие значительного вклада слияний между относительно небольшим числом появляющихся массивных галактик и мало массивными галактиками, время t_{cr} , соответствующее "фазовому переходу", существенно меньше характерного времени $(\sigma Vn)^{-1}$, где σ – сечение слияния для типичных галактик, n –их концентрация, а V – средняя скорость. Этот процесс можно сопоставить также наблюдаемому укручению ФМ галактик на ее легком конце [9f,26e]. При $\alpha > 2$ основная барионная масса Вселенной может быть сосредоточена в невидимых маломассивных галактиках.

Активность и слияния. Хотя идея взаимодействия, а тем более, слияния галактик, как одного из основных факторов их эволюции, наталкивалась на многочисленные возражения (см., например. список наиболее нетривиальных в [24а]), за последние годы произошло изменение во взглядах значительного числа исследователей на происхождение активных галактических ядер (АГЯ). Ответственность за активность возлагается на слияния галактик. Согласно практически общепринятым представлениям АГЯ представляют собой весьма сложно устроенную аккрецирующую систему вокруг сверхмассивной черной дыры, находящейся в центре хозяйской галактики [27]. (Упомянем аккреционный диск, затеняющий тор или толстый диск, по оси которого направлен радиовыброс в случае радиогромких объектов, систему быстролетящих облаков, формирующих широкие, а на больших расстояниях – уже за тором – узкие оптические эмиссионные линии и т.п.). Хотя в силу чрезвычайной эффективности энерговыделения при аккреции для питания большинства АГЯ достаточно "внутренних ресурсов", они, по не вполне понятным причинам, не обеспечивают необходимую поставку топлива. Данные последних трех декад, в особенности, данные космического телескопа Хаббла, убедительно свидетельствуют в пользу того, что взаимодействие галактик и, в первую очередь, их слияния (это непосредственно подтверждается наблюдением хозяйских галактик ближайших квазаров [27d]) ответственны за феномен активности, поставляя необходимое для аккреции вещество. Процесс слияний может носить взрывной характер (см. выше) и "эпоха квазаров" может соответствовать эпохе сборки массивных галактик из строительных блоков (карликовых галактик). Подобная "сборка" галактик позволяет объяснить как быстрое убывание числа квазаров от прошлого к настоящему, так и известный обрыв в их распределении на больших красных смещениях, сделать выводы о виде и эволюции их функции светимости [9, 25-27] и т.п. Радиогромкие квазары в модели слияний естественно связываются с вращением черной дыры, которое инициируется либо недавним "сильным" слиянием с галактикой сравнимой массы, либо относительно небольшим количеством" слабых" слияний массивной галактики с карликами. Местонахождение удаленных квазаров в скоплениях, а более близких в группах, способствует слияниям. Наиболее экзотический обсуждаемый вариант модели – возможность слияния галактики (или облака межгалактической среды) с "голой" массивной черной дырой [27g].

В модели слияний характерная масса галактик со временем растет, а светимость квазаров после эпохи их образования, как известно из наблюдений, падает. Таким образом, простая космологическая эволюция ФМ не может быть причиной этого падения. Одно из возможных объяснений уменьшения светимости квазаров заключается в космологической эволюции доли вещества η , реально попадающего в центр при слияниях [26c]. Уменьшение η на космологических временах можно связать с уменьшением содержания газа в галактиках. Действительно, при слиянии в центр попадает, в основном, газ, а за счет интенсивного звездообразования при каждом слиянии его доля, естественно, должна уменьшаться, как это и наблюдается. Влияет также эволюция контраста плотности галактик. При этом для не эволюционирующей ФМ доля вещества, попавшего в центр, изменяется с $\eta \sim 0.12$ -0.3 при $z \sim 2$ до $\eta \sim 0.025$ -0.043 при $z \sim 0.5$, а средний контраст плотности в местах образования квазаров – от ~ 1.4 -2.4 при $z \sim 2$ до ~ 4.5 -7.2 при $z \sim 0.5$. (В случае эволюции ФМ и учета эддингтоновского ограничения светимости параметр η и контраст плотности могут быть еще выше). Таким образом, рассматриваемая модель может описать наблюдаемую эволюцию квазаров.

Галактики в обсуждаемой схеме являются носителями массы и момента. Возможно сопоставление различным хаббловским морфологическим типам (через эффективный момент $S_{eff}(M)$, см. [25, 9d,e]). Эллиптические галактики с этой точки зрения принципиально не отличаются от спиралей. Суммарная ФМ получается шехтеровской $f(M) = M^{-\alpha} e^{-M/M^*}$ [24b], но ФМ для различных морфологических типов $f(M, S_{eff}(M))$ от нее отличаются.

13. Степенные спектры в природе.

Многие статистические закономерности в природе, приводящие к степенным распределениям, могут быть получены из простейшего предположения о малости времен корреляции случайных сил в уравнениях Ньютона dp/dt = f. Тогда эти силы можно считать δ - коррелированными: $\langle f(t+\tau) - f(t) \rangle = G\delta(\tau), G = \sigma^2 \tau_0$, где σ^2 – дисперсия случайных сил, τ_0 – малое время корреляции. Рассматриваемый процесс стационарен и характеризуется структурной функцией, получаемой интегрированием уравнений Ньютона: $D(\tau) = \langle [p(t+\tau) - p(t)]^2 \rangle = 2G\tau$, что означает диффузию «частиц» в пространстве импульсов. В серии работ Г.С.Голицына [28a] показано, что уже одно это допущение, при разном физическом смысле как «сил», так и «частиц», позволяет объяснить многие наблюдаемые статистические закономерности: от турбулентных законов распределения энергии волн, структуры рельефа поверхности планет, частоты повторяемости землетрясений – до спектра космических лучей [28b]. Дельта-корреляции сил соответствует постоянный по спектру частотный спектр⁸ – белый шум вида $E_f(\omega) = \varepsilon$, структурной функции импульсов [28c] – красный шум вида⁹ $E_p(\omega) = \varepsilon \omega^{-2}$, от которого, используя "законы дисперсии" для "квазичастиц" можно переходить к энергиям, волновым числам, масштабам [28a], а также оценивать закономерности потока событий и соотношения типа частота события – размер (в обычном пространстве либо в пространстве параметров). Для кумулятивной частоты событий $N(\ge E) = 1/\tau(\ge E)$, следствием белого шума для корреляционной функции сил является зависимость $N(\ge E) = \varepsilon/E$, объясняющая многие эмпирические зависимости частота-размер вида $N(\ge E) = E^a$: цунами $N(\ge h)$, h – высота, a=1.01; оползни $N(\ge m)$, m – масса грунта, a=0.95-1.1; озера $N(\ge S)$, S – площадь озера, a=0.93-0.95 и т.п. [28a].

В случае космических лучей основой рассмотрения остается классический механизм Ферми ускорения на системе ударных волн и эмпирический факт постоянства пространственной плотности космических лучей в интервале энергий $10-3.10^6$ Гэв, что приводит автора к показателю степени дифференциального энергетического спектра $-8/3 \approx -2.67$ [28a] при эмпирическом значении -2.7[28c]. Отметим, что отличные физические механизмы могут также приводить к индексам, близким к наблюдаемым значениям. Так, ускорение частиц при разрыве перемычек в плазменном пинче приводят к показателю спектра вида $-(1+\sqrt{3}) \approx -2.73$ [28d]. С другой стороны, индивидуальные особенности процессов ускорения в местах формирования спектров накладывают "отпечатки пальцев", приводящих, в частности, к отличию степенных спектров отдельных космических радиоисточников.

В возможностях обсуждаемого статистического подхода есть существенное отличие от метода, опирающегося на КУ. Чисто степенные зависимости в корреляционных и структурных функциях должны приводить к расходимостям в коэффициентах диффузии. В случае поисков точных решений КУ имеется возможность проверить сходимость ИС на полученных решениях. Такая сходимость, несмотря на степенной характер решения, является результатом компенсаций различных слагаемых в асимптотиках нелинейных ИС. В случае расходимости, т.н. "нелокальности" решений, преобладают взаимодействия квазичастиц разных масштабов, что может быть корректно учтено переходом к дифференциальному описанию, построенному на переразложениях КУ [8i]. Расходимость коэффициентов диффузии может означать уместность обращения к негауссовым статистикам Леви и дробным производным (см., например [28е]).

 $^{^{8}}$ Для колмогоровской турбулентности ${\cal E}$ соответствует потоку энергии по спектру.

⁹ В оригинальном тексте опечатка в показателе степени.

Интерпретация степенных спектров и изломов в них оказывается плодотворной в самых различных областях, например, способствуя выяснению механизмов излучения рентгеновских пульсаров в двойных системах [28f] или определения физических параметров радиогалактик и квазаров [28g] и т.п.

Приложение III. Группа симметрии кинетического уравнения и стационарные распределения в слаботурбулентных средах [29a]

Как было показано выше, важный класс существенно неравновесных распределений может быть получен как точное решение КУ, обращающее в нуль ИС $I_{ct} \{N\}$. Это – стационарные распределения с потоком по спектру турбулентности при удаленных (в k-пространстве) источнике и стоке волн. Решить нелинейное относительно распределения N_k интегральное уравнение $I_{ct} \{N\} = 0$ удается благодаря использованию его свойств симметрии, позволяющих (в частных случаях) факторизовать подынтегральное выражение в I_{ct} . Преобразования в пространстве частот, т.е. для изотропных распределений, были найдены Захаровым [8b], преобразования в **k**-пространстве – в работах Каца и автора [8d].

Покажем, что упомянутые преобразования образуют группу, а смысл факторизации *I*_{ст} состоит в проектировании подынтегрального выражения на ее неприводимое единичное представление, по которому преобразуются инварианты группы (см. [29b]), благодаря чему решение интегрального уравнения сводится к решению функционального уравнения, состоящего в равенстве нулю этой проекции.

Рассмотрим вначале нераспадный случай, к которому относится ленгмюровская турбулентность. При этом

$$I_{\rm cr} = \int d\tau_k \cdot w_k \cdot f_k, \quad d\tau_k \equiv d\mathbf{k}_1 d\mathbf{k}_2 d\mathbf{k}_3 \tag{II3.1}$$

вероятность рассеяния плазмонов (зависимость от аргументов теперь существенна)

$$w_{k} \equiv w_{kk_{1}|k_{2}k_{3}} = U_{\mathbf{k}\mathbf{k}_{1}|\mathbf{k}_{2}\mathbf{k}_{3}} \delta\left(\omega + \omega_{1} - \omega_{2} - \omega_{3}\right) \delta\left(\mathbf{k} + \mathbf{k}_{1} - \mathbf{k}_{2} - \mathbf{k}_{3}\right)$$

содержит закон сохранения энергии (из которого активационная частота выпадает) и импульса, а вид функции

$$f_k \equiv f_{kk_1|k_2k_3} = N_1N_2N_3 + NN_2N_3 - NN_1N_2 - NN_1N_3$$

учитывает сохранение числа волн при рассеянии. Закон сохранения импульса удобно изобразить в виде четырехугольника (вообще говоря, пространственного), см. рис. За. Преобразования подобия этой фигуры при фиксированной стороне **k** образуют группу симметрии интеграла столкновений в изотропной среде, если выполнены условия «автомодельности» $w_{\lambda k} = \lambda^n w_k$, $\omega_{\lambda k} = \lambda^\beta \omega_k$. Определяя операции G_i , относительно которых инвариантна приведенная вероятность перехода $\tilde{w} \equiv (kk_1k_2k_3)^{-n/4} w_k$ согласно $G_i\mathbf{k}_i = \mathbf{k}$ (i = 1, 2, 3), получаем таблицу умножения

где g_i – повороты, λ_i – растяжения. Группа G изоморфна C_4 (учет инвариантности относительно перестановки $\mathbf{k}_2 \rightleftharpoons \mathbf{k}_3$ приводит к группе D_4). Легко получить ее расширение, включая операции отражения в плоскости, содержащей вектор \mathbf{k} , и вращения вокруг \mathbf{k} (в трехмерном случае). Используя преобразования (ПЗ.2), спроектируем подынтегральное выражение на единичное представление (d - размерность \mathbf{k} -пространства):

$$I_{coll} = \frac{1}{4} \int d\tau_k w_k \left[f_k + \sum_{i=1}^3 \left(k/k_i \right)^r f_{G_i k} \right], \quad r = n + 4d.$$
(II3.3)

Решением интегрального уравнения I_{coll} {N} = 0 таким образом являются решения функционального уравнения:

$$\phi(N) = k^{-r} f_k + \sum_{i=1}^{3} k_i^{-r} f_{G_i k} = 0$$
(II3.4)

при выполнении законов сохранения. Для изотропных распределений

$$N = \omega^{s}, \quad \phi(N) \sim f_{k} \left(\omega^{-\nu} + \omega_{1}^{-\nu} - \omega_{2}^{-\nu} - \omega_{3}^{-\nu} \right), \quad \beta \nu = r + 3\beta S$$

и из (ПЗ.4) следуют решения, отвечающие постоянству потока частиц $S_0 = -r/3\beta$ и энергии $S_1 = -(1/3) - r/3\beta$. Из (ПЗ.4) следуют и те решения, в которых возникает малый дрейф (появление потока импульса и т.п., см. [8d, 2c]). В двумерном случае, например, для поверхностных волн или для поперечных **H** движений в замагниченной плазме, можно ввести комплексное представление векторов $\mathbf{k} \rightarrow z$, $\mathbf{k}_i \rightarrow z_i$ и преобразования группы сводятся к инверсии $G_i = z/z_i$ (Im z=0) [23b]. В этом виде они непосредственно обобщают преобразования [8b]. Для распадных процессов, где группу симметрии интеграла столкновений

$$I_{coll} = \int d\tau_k \left[w_{k|k_1k_2} f_{k|k_1k_2} - w_{k_1|k_2k} f_{k_1|k_2k} - w_{k_2|kk_1} f_{k_2|k_k_1} \right], \ d\tau_k \equiv d\mathbf{k}_1 d\mathbf{k}_2, \tag{II3.5}$$

при $w_{k|k_1k_2} = w_{k|k_2k_1} = U_{k|k_1k_2} \delta(\omega - \omega_1 - \omega_2) \delta(\mathbf{k} - \mathbf{k}_1 - \mathbf{k}_2)$ образуют преобразования E, G₁, G₂ (рис. 36) подобия треугольника, выражающего законы сохранения, она изоморфна D₃. При этом $f_k = N_1 N_2 - N N_1 - N N_2$ проектируется на неприводимое представление, по которому преобразуется приведенная вероятность $\tilde{w}_k \equiv (kk_1k_2)^{-n/3} w_k$, что, аналогично предыдущему, приводит к уравнению

$$\phi(N) = k^{-r} f_k - k_1^{-r} f_{G_1 k} - k_2^{-r} f_{G_2 k} = 0 \quad (r = n + 3d). \tag{II3.6}$$

Подобным образом находятся группы симметрии кинетических уравнений, описывающих взаимодействие волн с частицами. Так, при индуцированном рассеянии плазмонов на ионах преобразовавия: подобия четырехугольника $\mathbf{k} + \mathbf{p} = \mathbf{k}' + \mathbf{p}'$ (рис. 36) $G_k \mathbf{k}' = \mathbf{k}$, $G_p \mathbf{p}' = \mathbf{p}$ позволяют факторизовать плазмонный и ионный интегралы столкновений [29c]. Обе группы изоморфны $C_2(D_2)$. Наконец, интеграл столкновений Больцмана (или Ленарда-Балеску), описывающий_парные взаимодействия частиц, обладает группой симметрии $C_4(D_4)$, если вероятность рассеяния обладает свойством однородности $w_p \sim p^n$. Эта группа приводит к уравнению (ПЗ.4) с $f = N_2N_3 - NN_1$. Наличие указанной симметрии позволило найти в [e6,f7] распределение частиц с потоками по спектру. Как отмечалось в работе [e6], свойства плазмы с таким распределением частиц (чувствительные к наличию хвостовых частиц) должны существенно отличаться от равновесных. Вводя показатель однородности функции $f(N) \sim N^l$. приведем выражение для изотропных степенных распределений, пригодное как для волн [8d] (l = j - 1, j - число взаимодействующих волн), так и для частиц [23d] (l = 2):

$$N_{k} = P^{\frac{1}{l}} \omega_{k}^{s_{1}}, \quad S_{1} = -(r+\beta)/\beta l, \quad N_{k} = Q^{\frac{1}{l}} \omega_{k}^{s_{0}}, \quad S_{0} = -r/\beta l = S_{1} + 1/l \quad .$$
(II3.7)

Здесь r = n + jd для волн и n + 4d для частиц, P и Q соответственно потоки энергии и числа волн (частиц). Второе из распределений в (ПЗ.7), отвечающее постоянству потока частиц, существует лишь для процессов рассеяния, когда число частиц (волн) является интегралом движения. В важном вырожденном случае закона дисперсии, близкого к линейному, также возможно ввести преобразования симметрии, включающие в этом случае и растяжения углов в *k*-пространстве [29d, 22d]. Существенно также, что это вырождение сказывается и на величине вероятностей [29e].

Приложение IV. Скейлинг и спектры развитого волнения [30a]

Нераспадный закон дисперсии поверхностных гравитационных волн ($\omega_k = \sqrt{gk}$, ω - частота, **k**волновой вектор в плоскости раздела, $k = |\mathbf{k}|$, g – ускорение свободного падения) запрещает процессы распада (и слияния) волн и в теории слабой турбулентности (СТ) (см. I) главным процессом становится рассеяние с сохранением энергии, импульса и «числа волн» (I, рис 7.3). Благодаря относительной локализации и разнесенности источников возбуждаемых ветром волн ($k \sim k_+$) и их стоков, естественно считать, отвлекаясь от анизотропии, что от источника вверх по спектру направлен поток энергии (распределение Захарова-Филоненко (ЗФ) [8а])

$$N_k = c_1 P^{\frac{1}{3}} k^{-4} \tag{\Pi4.1}$$

вниз – поток числа волн (соответствующее распределение получается заменой $P \rightarrow \omega_k Q$ и $c \rightarrow c_0$ в (П4.1), но может быть получено и как точное решение КУ [2d]¹⁰). Мы будем интересоваться потоком вверх по спектру и, соответственно, коротковолновой частью волнения, где следует ожидать нарушения условия СТ (относительной малости потока):

$$Q/V_k^3 \ll 1 \tag{II4.2}$$

где $V_k \equiv \omega_k / k = \sqrt{g/k}$ – фазовая скорость волн. При нарушении (П4.2) нелинейный сдвиг частоты $\Delta \omega_k$ и нелинейное затухание γ_k уже не малы по сравнению с частотой ω_k . В СТ области сдвиг $\Delta \omega_k$, обобщающий известный стоксов сдвиг, определяется спектром волнения N_k и полудиагональным элементом гамильтоновой матрицы, описывающим четверные взаимодействия волн $V_{kk_1kk_1} \equiv V_{kk_1}^{(4)}$, ответственным за вклад волны \mathbf{k}_1 в (средний) частотный сдвиг волны \mathbf{k} :

$$\Delta \omega_k = \int d\mathbf{k}_1 \tilde{V}_{\mathbf{k}\mathbf{k}_1}^{(4)} N_{k_1} \quad . \tag{\Pi4.3}$$

Тильда над $\tilde{V}^{(4)}$ означает, что наряду с процессами рассеяния необходимо учитывать (во втором порядке теории возмущений) тройные процессы, определяемые матричным элементом $V^{(3)}$. Плотность "числа волн" $N_{\mathbf{k}}$ (волнового действия) пропорциональна Фурье-компоненте коррелятора одновременных возвышений поверхности, а плотность энергии в интервале $d\mathbf{k}$ в гармоническом приближении есть $\omega_{\mathbf{k}}N_{\mathbf{k}}$.

В интересующей нас области $V_{kk}^{(4)} \sim k^3$ и $V_{kq}^{(4)} \sim (kq)^{\frac{3}{2}}$ при $k \gg q$. Чисто четверные процессы согласно (П4.3) дают $\Delta \omega_k \sim k^{\frac{3}{2}}$, так как основной вклад в интеграл (П4.3). дает нижний предел. Результат существенно изменяется при учете тройных процессов: главные асимптотики $V_{kq}^{(4)}$ при $q \rightarrow 0$ взаимно погашаются и получаем $V_{kq}^{(4)} \sim kq^2$ [2d], что дает $\Delta \omega_k \propto k$

$$\Delta \omega_k = C P^{\frac{1}{3}} k \quad . \tag{\Pi4.4}$$

В обоих случаях видна та же тенденция: сдвиг частоты растет с ростом k и при $k > \overline{k} = C^{-2}qP^{-\frac{2}{3}}$, где $\Delta \omega_{\overline{k}} = \omega_{\overline{k}}$ превышает ω_k . При этом закон дисперсии становится распадным, что усиливает взаимодействие. Первая часть (П4.4) ввиду расходимости (П4.3) содержит большой (логарифмический для спектра (П4.1)) множитель $C \gg 1$, вообще говоря, слабо зависящий от k. Благодаря этому при $\tilde{v}_k = \Delta \omega_k / k = CP^{\frac{1}{3}}$ возможно появление малого параметра $k \gg \overline{k}$, где $P/\tilde{v}_k^3 \ll 1$. Область $k \approx \overline{k}$ является сильно турбулентной. Вне области СТ используем графическую технику

¹⁰ На обратное направление потока в этом распределении было указано В.Е.Захаровым.

Уальда (см. [8k, 28c]), в которой система связанных уравнений для функции Грина *G* и коррелятора *N* аналогична уравнениям Дайсона:

$$G^{-1} = G_0^{-1} - \sum , \quad N = |G|^2 \Phi.$$
 (II4.5)

Здесь $G_0^{-1} = \omega - \omega_k - i\gamma_k^L$, $\Sigma = \Delta \omega_{k\omega} - i\gamma_{k\omega}$, $N \equiv N_{k\omega}$, $N_k = \int d\omega N_{k\omega}$, $G \equiv G_{k\omega}$ – индексы **k**, ω опускаем. Собственная энергия Σ и функция Φ выражаются бесконечными рядами, которые можно частично отсуммировать, перейдя к точным гриновским функциям *G* и вводя перенормированные вершины. Таких вершин возникает несколько типов как для тройных, так и для четверных процессов. Имея в виду в дальнейшем скейлинговую область [30b], не будем для краткости их различать. Символические выражения для Φ и Σ имеют вид

$$\Phi = \swarrow + \ll \checkmark \qquad (\Pi 4.6)$$

а уравнения для вершин $\Delta \equiv 3$ и $\Box \equiv 4$ содержат бесконечные ряды

$$\Box = \times + \bigtriangleup \qquad \bigtriangleup + \dots \tag{(II4.7')}$$

Здесь сплошной линии соответствует G, волнистой -N, точки – затравочные вершины $V^{(3)}$ и $V^{(4)}$. В области СТ роль малого параметра играет величина $4 \cdot GNk^2 \omega$, вершины можно заменить затравочными $3 \rightarrow 3_0 \equiv V^{(3)}$ и $4 \rightarrow 4_0 \equiv V^{(4)}$, функция Грина $G \rightarrow G_0$, а из уравнений (П4.5,6) следует обычное КУ. Учет нелинейного сдвига частоты, обсуждавшийся выше, соответствует тому, что $\Re e \Sigma$ велика ($|\Re e \Sigma| \gg \omega_k$) и в (П4.6,7) существенно отличие гриновской функции от затравочной. Такая процедура, однако, с необходимостью влечет перенормировку тройной вершины. Действительно, из (П4.7') следует 4 = 3G3, в то время как для невозмущенных вершин $4_0 = 3_0 G_0 3_0$. Переход от G_0 к G непосредственно не отражается на четверной вершине, не зависящей от частоты ω_k , и можно положить $4 \simeq 4_0$, а тройная вершина вынуждена к ней подстраиваться. При этом сохраняется условие компенсации, приводящей к линейной дисперсии (П4.4). Этот результат имеет более общий смысл и связан с условием скейлинга [30b] (см. ниже). Для справедливости КУ с модифицированным законом дисперсии необходимо $\gamma_k \ll \delta \omega_k$. Для тройных процессов $\gamma_k^{(3)} \sim kJ^{\frac{1}{3}}$, а в силу сходимости интеграла не содержит большого множителя. Поэтому $\gamma_k^{(3)} \ll \Delta \omega_k$. Однако, $\gamma_k^{(4)}$ уже расходится. Поэтому как $\Delta \omega_k$, так и γ_k необходимо искать самосо-

гласованно из (П4.5,6). А именно, необходимо учесть вклад γ_k , что приводит к оценке $\gamma_k^{(4)} \sim \gamma_k \sim \Delta \omega_k$. Этот результат означает, что если $\Re e \Sigma$ является однородной функцией ω и $k(\Delta \omega \sim k^{\beta})$, то $\gamma = \Im m \Sigma$ будет иметь ту же степень однородности. Последнее позволяет найти при этих условиях решение обобщенного КУ (следствие уравнений Дайсона (П4.5)): $L_{k\omega} \equiv N\Im m\Sigma + \Phi\Im mG^* = 0$. Учитывая однородность полной гриновской функции при $\omega_k \ll \Delta \omega_k \sim \gamma_k \sim k^{\beta}$, $G_{\mathbf{k}\omega} \simeq \left(\omega - \omega_k - i\gamma_k\right)^{-1}$ и коррелятора $N_{\mathbf{k}\omega} = \gamma_k \left|G_{\mathbf{k}\omega}\right|^2 N_k$, можно из уравнения $L_{\omega} \equiv \int d\mathbf{k} N_{\mathbf{k}\omega} = 0$ найти степенные решения для N_k (см. [2d]). При этом для тройных процессов при $V_{\lambda p \lambda p_1 \lambda p_2} = \lambda^{ma} V_{pp_1 p_2}, \quad p \equiv (\omega, \mathbf{k}), \quad \lambda p \equiv (\lambda \omega, \lambda^{\frac{1}{\beta}} \mathbf{k})$ получим $N_k \sim k^{-(d+ma)}, \quad d$ (=2 в нашем случае) – размерность k -пространства. Эту зависимость можно получить непосредственно из условия постоянства потока $P \sim \gamma_k \Delta \omega_k N_k k^d$, $\gamma \sim (G3^2 N_k k^d)$. Совместно с условием $\gamma \sim k^\beta$ это позволяет выразить индекс перенормированной вершины m_3 и N_k через β : $m_3 = 2\beta$, $N_k \sim k^{-(d+2\beta)}$. При согласованных вершинах $m_4 = 2m_3 - \beta$ и четверные процессы также приводят к (П4.10). Отметим, что при $\beta = 1$ это решение дает спектр (П4.1), хотя теперь смысл «квазичастиц» совсем иной и КУ неприменимо, т.к. благодаря нелинейным взаимодействиям волн утрачена однозначная связь между ω и k, и нелинейное затухание становится того же порядка, что и частота. Отметим, что $\beta = 1$ соответствует индексу неперенормированной четверной вершины $m_3 = 3$.

Вернемся к точным уравнениям (П4.5-7) и применим к ним идеи, разработанные в теории фазовых переходов [30b] для ситуаций, в которых не существенны ни внешние, ни внутренние (микроскопические) масштабы, что характерно и для турбулентности [28e]. Выписываем далее только размерности по k и ω . Условия, при которых все слагаемые в уравнениях, за исключением затравочных вершин одного порядка:

$$3^2 G = 4$$
, $4 \cdot GNk^d \omega = 1$ ($G\omega = 1$). ($\Pi 4.11$)

Два соотношения для четырех величин 3,4,*G* и *N* позволяют накладывать два дополнительных условия. Если потребовать, чтобы $3 = 3_0$, $4 = 4_0$, то придем к распределению Филлипса [5c] $N_k \sim \omega_k / k^5$, $\omega_k N_k \sim k^{-4}$. Поток энергии при этом непостоянен, что видно из его размерности (П4.9). Потребуем теперь, напротив, постоянства потока *P* = const в качестве условия, дополнительного к (П4.11). При этом остается один свободный параметр, в качестве которого можно принять индекс четверной вершины. Если определить его условием $4=4_0$, то для $\varpi_k = \omega_k + \Delta \omega_k$ получаем линейный спектр (ср. (П4.4) и распределение (П4.1)). Существенно, однако, что частотный

спектр при этом будет отличаться от соответствующего спектра ЗФ. Полученный результат согласуется с наблюдавшимся уширением волновых состояний и изменением дисперсии в коротковол-

новой области спектра развитого волнения [5d]. Грубая оценка области перехода $k \sim k$ приводит

к $k_+/k \sim 2\pi\gamma_+/\omega_+$, где γ_+ – инкремент ветровой неустойчивости. По достижении порога Кельвина-Гельмгольца это отношение перестает быть малым. Это может означать необходимость включения взаимодействия с ветром, перестраивающего спектр волн, в картину нелинейных взаимодействий.

Пользуюсь случаем принести благодарность за многолетнее сотрудничество А.В.Кацу и обсуждения затронутых в обзоре вопросов участникам Совета по нелинейной динамике РАН и, в первую очередь, В.Е.Захарову и Е.А.Кузнецову.

Литература

[1]

а) Ландау Л.Д., Лифшиц Е.М. Механика. – М.: ГИФМЛ, 1958. – 206 с.

b) Арнольд В.И. Математические методы классической механики. – М: Наука, 1974. – 431 с.

с) Бакай А.С., Степановский Ю.П. Адиабатические инварианты. – Киев: Наук. думка, 1981. – 238 с.

d) Лихтенберг А., Либерман М. Регулярная и стохастическая динамика.- М: Мир, 1984.-528 с.

е) Рабинович М.И., Трубецков Д.И. Введение в теорию колебаний и волн.-М: Наука, 1984.-432 с.

f) Заславский Г.М. Стохастичность динамических систем.-М: Наука, 1984.-271 с.

g) Ландау Л. Д., Лифшиц Е. М. Гидродинамика.-М.: Наука, 1986.-736 с.

h) Львов В.С. Нелинейные спиновые волны.-М.: Наука, 1987.- 271 с.

 i) Косевич А.М., Ковалев А.С. Введение в нелинейную физическую механику.–Киев: Наукова Думка, 1989.–295 с.

[2]

а) Захаров В.Е. Гамильтоновский формализм для гидродинамических моделей плазмы // ЖЭТФ.–1971.–Т. 60, 1714-1726.

b) Захаров В.Е. Гамильтоновский формализм для волн в нелинейных средах с дисперсией // Изв.
 Вузов, Радиофизика.–1974.– Т.17, № 4.–С.431-453.

с) Кадомцев Б.Б., Конторович В.М. Теория турбулентности в гидродинамике и плазме // Изв.
 ВУЗов, Радиофизика.–1974.– Т.17, №4.– с.511-540.

d) Кац А.В., Конторович В.М. К теории слабой турбулентности волн на поверхности жидкости // ПМТФ.– 1974.– №6.–С. 97-106.

е) Гончаров В.П., Павлов В.И. Проблемы гидродинамики в гамильтоновом описании.–М.: Изд.
 МГУ, 1993.–197 с.

f) Захаров В.Е., Кузнецов Е.А. Гамильтоновский формализм для нелинейных волн // УФН.–1997,
 T.167, № 11.– С. 1137-1167.

[3]

а) Скотт Э. Волны в активных и нелинейных средах в приложении к электронике.-М.: Сов. радио, 1977.-368 с.

b) Захаров В. Е., Манаков С. В., Новиков С. П., Питаевский Л. П.. Теория солитонов: Метод обратной задачи.– М: Наука, 1980.–319 с.

с) Солитоны / Под ред. Р. Буллофа, Ф. Кодри.–М: Мир, 1983.–408 с.

d) Абловиц М., Сигур Х. Солитоны и метод обратной задачи.- М: Мир, 1987.-480 с.

f) Ньюэлл А. Солитоны в математике и физике.-М: Мир, 1989.-324 с.

[4]

а) Дубровин Б.А., Новиков С.П., Фоменко А.Т.. Современная геометрия.-М: Наука, 1979.-759 с.

b) Тода М. Теория нелинейных решеток.-М.: Мир, 1984.-262 с.

с) Калоджеро Ф., Дегасперис А. Спектральные преобразования и солитоны.-М: Мир, 1985.-469 с.

d) Тахтаджян Л. А., Фаддеев Л. Д. Гамильтонов подход в теории солитонов.–М: Наука, 1986.–527с.
 [5]

a) Miles J. W. On the generation of surface waves by shear flows // J. Fluid Mech.– 1957.– Vol. 3, No2.– P. 185-204.

b) Захаров В.Е. Устойчивость периодических волн конечной амплитуды на поверхности жидкости

// ЖЭТФ.– 1966.– Т. 51, с. 1107-1114; Устойчивость периодических волн конечной амплитуды на поверхности глубокой жидкости.– ПМТФ.–1968, № 2.–С.86-94.

с) Филлипс О.М. Динамика верхнего слоя океана.-М.: Мир, 1969.-268 с.

d) Юэн Г., Лейк Б. Нелинейная динамика гравитационных волн на глубокой воде.–М.: Мир. 1987.–180 с.

е) Красицкий В.П. О каноническом преобразовании в теории слабонелинейных волн с нераспадным законом дисперсии // ЖЭТФ.–1990.– Т.71, №5.–С. 1644-1655.

f) Степанянц Ю.А., Фабрикант А. Л. Распространение волн в сдвиговых потоках.-М.: Наука, 1996.-240 с.

g) Гестрин С.Г., Конторович В.М. Ветровая неустойчивость в астрофизике (применительно к джетам, кометным хвостам, спиральной структуре галактик) // Радиофизика и радиоастрономия.– 1997.–Т. 2, № 4.–С. 419-438.

h) Захаров В.Е., Харитонов В.Г. Неустойчивость монохроматических волн на поверхности жидкости произвольной глубины // ПМТФ.–1970.– №5.– С. 45-49.

[6]

а) Лэмб Г. Гидродинамика.-М.: ГТТИ, 1947, (раздел "Преобразование Клебша", с.312-314).

b) Давыдов Б.И. Вариационный принцип и канонические уравнения для идеальной жидкости // ДАН СССР.– 1949.– Т.69, №2.–С. 165-168.

c) Lin C.C. Liquid helium, Proc. Int. School of physics, Course XXI, Acad. Press, N.Y. (1963).
d) Seliger R.I., Whitham G.B. Variational principles in continuum mechanics // Proc. Roy. Soc.–1968.–
Vol. A305.–P. 1-25. Перевод в сб. Механика.–1969.– No 5.–C. 99-123.

е) Синицын Ю.А., Конторович В.М. Взаимодействие длинных волн и мелкомасштабной турбулентности. В сб. Исследования турбулентной структуры океана, Севастополь, Изд. МГИ АН УССР, 1975, с.96.

f) Конторович В.М. Возможная роль внутренних волн в возникновении мелкомасштабной турбулентности в стратифицированном океане // Изв. вузов, Радиофизика.–1976.– Т.19, №5-6.–С.872-879

g) Конторович В.М., Кравчик Х., Тиме В., Гамильтоново описание непотенциального движения в присутствии свободной поверхности в обычной и магнитной гидродинамике. Препринт ИРЭ АН УССР. Харьков, 1980, №158, 12 с.; Сб. "Взаимодействие и самовоздействие волн в нелинейных средах", часть П.–Душанбе, Изд-во Дониш, 1988.–с.73-77.

h) Кац А.В., Конторович В.М. Гамильтоново описание движения поверхностей разрыва // Физика Низких Температур.–1998.– Т.23, № 1.–С. 120-128.

i) Kats A.V. Variational principle and canonical variables in hydrodynamics with discontinuities // Physica D.– 2001.– Vol. 152-153.–P. 459-474.

[7]

а) Кадомцев Б.Б., Карпман В.И. Нелинейные волны // УФН.– 1971.– Т.103, №2.–С. 193-232.

b) Карпман В.И. Нелинейные волны в диспергирующих средах.-М: Наука, 1973.-175 с.

с) Кадомцев Б.Б., Коллективные явления в плазме.-М.: Наука, 1976.-238 с.

d) Уизем Дж. Линейные и нелинейные волны.-М: Мир, 1977.-622 с.

е) Бхатнагар П. Нелинейные волны в одномерных дисперсных системах.–М.: Мир, 1983.–136 с.
[8]

а) Захаров В.Е., Филоненко Н.Н. Спектр энергии для стохастических колебаний поверхности жидкости // Докл. АН СССР.–1966.– Т. 170, №6.–С. 1292-1295.

b) Захаров В.Е. Об устойчивости волн в нелинейных средах с дисперсией // ЖЭТФ.– 1966.– Т.51,
 №4.–С. 688-696; Коллапс ленгмюровских волн // ibid.– 1972.– Т.62, №5.– С. 1745-1759.

с) Захаров В.Е., Сагдеев Р.З. О спектре акустической турбулентности // Докл. АН СССР.–1970.– Т.192, №2.–С. 297-300.

d) Кац А.В., Конторович В.М. Дрейфовые стационарные решения в теории слабой турбулентности
 // Письма в ЖЭТФ.–1971.– Т.14, №6.–С. 392-395.

f) Кац А.В., Направление перекачки энергии и числа частиц по спектру в стационарных степенных решениях кинетических уравнений для волн и частиц // ЖЭТФ.–1976.– Т.71., №6.– С. 2104-2112.

g) Кац А.В., Конторович В.М. О степенных распределениях, устанавливающихся в плазменном турбулентном реакторе // ЖЭТФ.–1977.– Т.73, №6.–С. 2157-2168.

h) Кац А.В., Конторович В.М. Степенные спектры излучения, описываемые решениями уравнения Компанейца при отличном от нуля потоке // Изв. вузов. Радиофизика.–1977.– Т.20, №7.–С. 1112-1114.

 i) Балк А.М., Захаров В.Е., Назаренко С.В. О нелокальной турбулентности дрейфовых волн // ЖЭТФ.– 1990.– Т.98, № 8.–С.446-467.

k) Zakharov V.E., L'vov V.S., Falkovich G. Kolmogorov Spectra of Turbulence. Wave Turbulence. N.Y.: Springer-Verlag, 1992.–330 p.

Фриш У. Турбулентность. Наследие Колмогорова.–М.: Фазис, 1998.–345 с..
 [9]

a) Vinokurov L.I., Kats A.V. and Kontorovich V.M.. The relation between the velocity and mass distributions. The role of collisionless relacsation processes // J. Stat. Phys.–1985.–Vol. 38, No 1-2.–P. 217-229.
b) Cavaliere A., Colofrancesco S. and Menci N. Merging in cosmic structures // Astrophys. J.–1992.–
Vol. 392, No1.–P. 41-44.

c) Kontorovich V.M., The connection between the interaction of galaxies and their activity // Astron. and Astrophys. Transactions.–1994.–Vol. 5,No 3.– P. 259-278.

d) Kontorovich V.M., Krivitsky D.S. and Kats A.V. "Explosive" evolution of galaxies (an analogue of collapse) and appearance of quasars in the merger model // Physica D.–1995, Vol. **87.**– P. 290-294.

e) Krivitsky D.S. and Kontorovich V.M., Mergers of galaxies in clusters: Monte Carlo simulation of mass and angular momentum distribution // Astron. Astrophys.–1997.– Vol. 327, .–P. 921-929.

f) Kontorovich V.M. Zakharov's transformation in the problem of galaxy mass distribution function // Physica D.–2001.–Vol. 152-153.– P.676-681.

[10]

а) Гельфанд И.М., Левитан Б.М. Об определении дифференциального уравнения по его спектральной функции // Изв. АН СССР. Сер. мат.–1951.– Т.15, №4.– С. 309-360.

b) Левин Б.Я. Преобразования типа Фурье и Лапласа при помощи решений дифференциального уравнения второго порядка // ДАН СССР.–1956.– Т.106, №2.–С.187-190.

с) Марченко В.А. Восстановление потенциальной энергии по фазам рассеянных волн // ДАН СССР.–1955.– Т.104, №5.– С.695-698.

d) Марченко В.А. операторы Штурма-Лиувилля и их приложения.–Киев: Наукова Думка, 1977.–332с.

e) Zabusky N.E., Kruskal M.D. Interaction of "solitons" in a collisionless plasma and the recurrence of initial state // Phys.Rev.Lett. – 1965.– Vol. 15, No 6.– P.240-243.

f) Gardner C.S., Green I.M., Kruskal M.D., MiuraV. Method of solving the Kortveg-deVries equation // Phys.Rev.Lett. – 1965.– Vol.19, No 19.– P.1095-1098.

g) Захаров В.Е., Шабат А.Б. Точная теория самофокусировки и одномерной автомодуляции волн в нелинейных средах // ЖЭТФ.– Т.61, №1.– С. 118-134.

h) Захаров В.Е. Метод обратной задачи рассеяния. В книге И.А. Кунин, Теория упругих сред с микроструктурой.–М.: Наука, 1975.–С.226-273.

[11]

Дирак П., Лекции по квантовой механике.-М.: Мир, 1968.-84 с.

[12]

а) Покровский В.Л., Халатников И.М. О превращении первого звука во второй в сверхтекучем гелии // ЖЭТФ, 1976.– Т.71, №5.–С.1974 - 1986.

b) Elze H., Codama T., Hama Y., Marker M. and Rafelski. Variational approach to hydrodynamics – from QGP to General Relativity // ArXiv hep-ph / 9809570.

[13]

a) Kuznetsov E.A., Mikhailov A.V. On the topological meaning of canonical Clebsch variables // Phys.Lett.-1980.- Vol. 77A, No1.- P. 37-38.

b) Моффат Г. Некоторые направления развития теории турбулентности. В Сб. "Современная гидродинамика (успехи и проблемы)".–М.: Мир,1984.– С.49-76. Journal of Fluid Mech.–1981.–Vol. 106. [14]

а) Седов Л.И. Математические методы построения новых моделей сплошных сред // Усп. Мат. Наук.– 1965.– Т.20, №5.– С.121-180.

b) Бердичевский В.Л. Вариационные принципы механики сплошной среды.–М.: Наука, 1983.–448с.

[15]

a) Longet-Higgins M.S. Capillary-gravity waves of solitary type on deep water // J.Fluid Mech.- 1989.-

Vol. 200.– P. 451-470; Capillary-gravity waves of solitary type and envelope solitons on deep water // **ibid**.–1993, Vol. 252.–P. 703-711.

b) Dias F., Iooss G. Capillary-gravity solitary waves with damped oscillation // Physica D.–1993.– Vol. 65 .–P. 399-423.

с) Захаров В.Е., Кузнецов Е.А. Оптические солитоны и квазисолитоны // ЖЭТФ.–1998.– 113, №5.–
С. 1892-1914.

 d) Кузнецов Е.А. Жесткий режим возбуждения солитонов: исследование устойчивости // ЖЭТФ.–1999.– Т.116, №7.– С. 299-317. e) Dias F., Kharif C. Nonlinear gravity and capillary-gravity waves // Ann. Rev. Fluid Mech.– 1999.– Vol. 31.– P. 301-346.

f) Perlin M., Schultz W. Capillary effects on surface waves // Ann. Rev. Fluid Mech.- 2000.- Vol. 32.- P. 241-274.

g) Косевич А.М. Свойства динамических солитонов нелинейных систем, определяемые линеаризованным уравнением // ФНТ.–2000.– Т.26, №6.– С. 620-625.

[16]

Лифшиц И.М. Физика реальных кристаллов и неупорядоченных систем.– М., Наука, 1987.–552 с. [17]

Фаддеев Л.Д. Гамильтонова интерпретация метода обратного преобразования рассеяния. В сб.: Солитоны. Под ред. Р.Буллафа и Ф.Кодри.– М.: Мир,1983.–С. 363-379.

[18]

а) Ландау Л. Д., Лифшиц Е. М. Теория поля.-М.: Наука, 1988.-512 с.

b) Ландау Л. Д., Лифшиц Е. М. Квантовая механика.-М.: Наука, 1980.-704 с.

с) Ландау Л. Д., Лифшиц Е. М. Статистическая физика. Т1.-М.: Наука, 1974.-584 с.

[19]

a) Bazelyan L.L., Goncharov N.Yu., Zaitsev V.V. Zinichev V.A., Rapoport V.O. and Tsybko Ya.G. Frequency and time splitting of decameter Solar radio bursts. II: Chains // Solar Physics. 1974, Vol.39, P.223-231.

b) Ван-Дайк М. Альбом течений жидкости и газа.-М.: Мир,1986.-184 с.

с) Постнов К.А. Космические гамма-всплески // УФН.-Т.169,№5.-С.545-558.

d) Бломберген Н. Нелинейная оптика.-М.: Мир, 1966.-44 с.

[20]

а) Бэтчелор Дж. Введение в динамику жидкостей.-М.: Мир, 1973.-758 с.

b) Милн-Томсон Л.М. Теоретическая гидромеханика.-М.: Мир, 1964.-556 с.

с) Петвиашвили В.И., Похотелов О.А. Уединенные волны в плазме и атмосфере.-М.: Энергоиздат, 1989.-200 с.

d) Степанянц Ю.А., Фабрикант А.П. Распространение волн в сдвиговых потоках.-М.: Наука, 1996.-240 с.

е) Черноусенко В.М., Куклин В.М., Панченко И.П. Структуры в неравновесных средах. В сб.: Интегрируемость и кинетические уравнения для солитонов.–Киев: Наукова Думка, 1990.–С.333-416.
f) Дим Г., Забуски Н. Стационарные V-состояния, их взаимодействие, возврат и разрушение. В сб.: Солитоны в действии. Под ред. К.Лонгрена и Э.Скотта.–М.: Мир, 1981.–С.289-304.

g) Кузнецов Е.А., Рубан В.П. Гамильтоновская динамика вихревых нитей в системах гидродинамического типа // Письма в ЖЭТФ.–1998, №12.– С. 1015-1020; Коллапс вихревых линий в гидродинамике // ЖЭТФ.– 2000.–Т.118, №10.–С.893-905.

h) Козлов В.В. Общая теория вихрей.-Москва-Ижевск: Изд. дом «Удмуртский университет», 1998.-239с.

 i) Копьев В.Ф., Чернышев С.А. Колебания вихревого кольца, возникновение в нем турбулентности и генерация звука // УФН.–2000.–Т.170, №7.– С.713-142.

[21]

а) Конторович В.М. Линейные и нелинейные волны (элементарное введение в теорию гамильтоновых переменных с применениями к физике плазмы и астрофизике). *Часть І. Динамический подход*. Радиофизика и радиоастрономия, Т.6, №3, с. 165-211, 2001, далее I; Telecommunications and radio engineering - 2004, Vol.61, №11, P. 903-982.

b) Лифшиц Е.М., Питаевский Л.П. Физическая кинетика.– М.: Наука, 1979.– 528с.; Силин В.П. Введение в кинетическую теорию газов.– ibid, 1971.– 332 с.; Ахиезер А.И., Пелетминский С.В. Методы статистической физики.– ibid, 1977.– 368 с.

c) Kraichnan R.N. Inertial-range transfer in two and three-dimensional turbulence // J.Fluid Mech.– 1971, Vol.47, №3.– P.525-535; Kraichnan R.N., Montgomery D. Two-dimensional turbulence // Rep.Progr.Phys.–1980, Vol.43.– P.547-619.

d) Hasselman K. On the nonlinear energy transfer in a gravity wave spectrum // J.Fluid Mech., 1962, Vol.12, P.481-500; 1963, Vol.15, P.273–281, 385-398.

е) Баренблатт Г.И. Подобие, автомодельность, промежуточная асимптотика. – Ленинград: Гидрометеоиздат, 1982, 256 с.

f) Захаров В.Е. Колмогоровские спектры в задачах слабой турбулентности. В Сб.Основы физики плазмы. Т.2.–М.: Энергоатомиздат, 1984.–С.48-79.

[22]

a) Badulin S.I., Pushkarev A.N., Resio D. and Zakharov V.E. Self-similarity of wind-driven seas // Nonlinear Processes in Geophysics, 2005, Vol.12, P.891-945; A self-similar parametrization of wind-wave spectra. In: "Topical Problems of Nonlinear Wave Physics", Eds. E.Mareev, Yu.Troitskaya, p.10-11, N.Novgorod, Inst. Appl. Phys. RAN, 2005; Annenkov S.I., Shrira V.I Direct numerical simulation of evolution of random water wave fields: direct and inverse cascades. **ibid**, P.8-9.

b) Medvedev S.B., Zeitlin V. Weak turbulence of short equatorial waves // Physics letters A, 2005, Vol.342, P.217-227.

с) Пелиновский Е.Н.. Гидродинамика волн цунами.– Нижний Новгород: Изд-во ИПФ, 1996.– 276с; Куркин А.А., Пелиновский Е.Н. Волны-убийцы.– **ibid**, 2004.– 158с.

 d) Монин А.С. Теоретические основы геофизической гидродинамики. – Ленинград: Гидрометеоиздат, 1988. – 424с. а) Кац А.В., Конторович В.М. Взаимосвязь равновесных и потоковых слаботурбулентных распределений. В сб.: Нелинейные волны. М.: Наука, 1979, С. 151-163; С.В. Волоцкий, А.В. Кац, В. М. Конторович, В.Н. Мельник, В.А. Шнейдман. К теории слаботурбулентных колмогоровских спектров. В сб.: Нелинейные волны. Горький: Изд-во ИПФ, 1980, С. 161-171.

b) Кузнецов Е.А. Слабая магнитогидродинамическая турбулентность замагниченной плазмы // ЖЭТФ, 2001, Т.120, №5 (11), С. 1213-1226.

с) Ахиезер А.И., Померанчук И.Я. Некоторые вопросы теории ядра. – М.: ОГИЗ, 1948.

d) Кац А.В., Конторович В.М., Моисеев С.С., Новиков В.Е. Степенные решения кинетического уравнения Больцмана, описывающие распределения частиц с потоками по спектру // Письма в ЖЭТФ .– 1975, Т.21, С.13-16; Точные степенные решения кинетических уравнений для частиц // ЖЭТФ .– 1976, Т.71, С.177-192.
е) Кац А.В., Конторович В.М. Степенные спектры излучения, описываемые решениями уравнения Компанейца при отличном от нуля потоке // Изв. вузов. Радиофизика .– 1977, Т.20, С. 1112-1115.

f) Зельдович Я. Б.. Взаимодействие свободных электронов с электромагнитным излучением // УФН, 1975, Т.115, №1, С. 161-197; Илларионов А. Ф., Сюняев Р. А. Комптон-эффект на тепловых электронах в источниках рентгеновского излучения // Астрон. Журн.–1972, Т.49, №1.– С. 58-73; Комптонизация, характерные спектры и тепловой баланс разреженной плазмы // ibid,1974, Т.51, №4, с. 698-711; Sunyaev R.A.,Titarchuk L.G. Comptonization of X-rays in Plasma Clouds. Typical Radiation Spectra. //Astron.& Astrophys.– 1980.– Vol.86, №1.– P.121-138.

g) Кац А.В., Конторович В.М., Кочанов А. Е. Спектры релятивистских электронов и излучения, формируемые комптоновским рассеянием при отличном от нуля потоке // Astrophys. Space Sci.– 1978.– Vol.57.– P.321-345; Кочанов А. Е., В. М. Конторович. Нелинейные спектры радиоисточников при жесткой инжекции // Изв. вузов. Радиофизика.– 1981.– Т.24, №9.– С. 1047-1053.

h) Каплан С. А., Цытович В. Н. Плазменная астрофизика. М.: Наука, 1972. 440с; Norman C. A., Ter Haar D. Plasma turbulent reactors. Preprint Oxford Univ., №57/74, 1974; Phys. Rep.-1975. – Vol.17C. – P.307-317;

i) Кац А.В., Конторович В.М. О степенных распределениях, устанавливающихся в плазменном турбулентном реакторе // ЖЭТФ.– 1977.– Т.73, №7.– С. 2157-2168.

k) Карась В.И., Моисеев С. С., Новиков В. Е. Неравновесные стационарные распределения заряженных частиц в твердотельной плазме // ЖЭТФ.– 1976.– Т.71, №5.– С.1421-1433

m) Балебанов В.М., Карась В.И., Карась И.В., Кононенко С., Муратов В.И., Моисеев С.С., Нагушев О.Ю. Неравновесные стационарные распределения электронов с потоком частиц по спектру в твердотельной плазме и их применения // Физика плазмы.– 1998.– Т.24, №5.– С. 789-807.

[24]

a) Kennicutt, Jr. R.C., Schweizer P., Barnes J.E. Galaxies: Interactions and Induced Star Formation. Saas-Fee Advance Course. Vol.26, Springer.– 1998.– 404 p.

b) Schmidt M., Schneider D.P., Gunn J.E. Evolution of the luminosity function from quasars // Astron. J.- 1995, Vol.110.- P. 68-77.

с) Конторович В.М. Влияние слияний на динамические свойства галактик // Кинематика и Физика Небесных Тел.– 1999.– Приложение №2, С.47-56.

d) Binggeli B., Sandage A., Tammann G.A. The luminosity function of galaxies // Ann. Rev. Astron. Ap.- 1988, Vol.26.- P. 509-560.

e) Cavaliere A., Menci N. The cosmological mass distribution from Cayley trees with disorder // Astrophys.J.– 1994.– Vol.435, №2, P. 528-535.

f) PressW.H.& Shechter P. Formation of galaxies and clasters of galaxies by self-similar gravitational condensation
 // Astrophys. J.– 1974.– Vol.187, №3.– P. 425-435.

[25]

а) Волощук В.М. Кинетическая теория коагуляции. Ленинград: Гидрометеоиздат. – 1984. – 284 с.

b) Stockmayer W.H. Theory of molecular size distribution and gel formation in branched-chain polymers //

J.Chem.Phys.-1943.- Vol.11, No2.-P.45-55.

с) Трубников Б.А. Решение уравнений коагуляции при билинейном коэффициенте слипания частиц // ДАН СССР.–1971.– Т.196, №6.–С.1316-1319.

d) Эрнст М. Кинетика образования кластеров при необратимой агрегации. В сб.: Фракталы в физике, с. 399-429. Под ред. Л.Пьетронеро и Э.Тозатти. Москва, Мир. – 1988. – 627с.

е) Софронов В.С. Эволюция допланетного облака и образование Земли и планет. - М.:Наука, 1969. -

244с.; Софронов В.С., Витязев А.В. Происхождение солнечной системы // Астрономия. – Т.24. Итоги Нау-

ки. - М.:ВИНИТИ.-1985. - С.5-93; Скало Дж.М. Спектр звездных масс. - Протозвезды и планеты, ч.1. -

М.:Мир. - 1982. -С.295-320.

[26]¹¹

а) Кац А.В., Конторович В.М. Распределение галактик по массам и моментам, формирующееся в результате слияний, и проблема активности ядер // ЖЭТФ.– 1990.– Т. 97, №1.– С. 3-19.

b) Конторович В.М., Кац А.В., Кривицкий Д.С. "Взрывная" эволюция галактик в модели слияний и эпоха возникновения квазаров // Письма в ЖЭТФ.– 1992.– Т.55, №9.– С. 3-9.

с) Конторович В.М., Кривицкий Д.С. Функция светимости квазаров в модели слияний // Письма в Астрон. журн.– 1995.– Т.21, №9.– С. 643-649.

d) Cavaliere A., Colofrancesco B., Menci N. The merging runaway // Astrophys. J.– 1991.– Vol.376, №2.– P. L37-41.

e) Kontorovich V.M. The weak turbulence methods in the problem of galaxy mass distribution function // Problems of Atomic Sci. & Techn.– 2000.– №6, Series: Plasma Physics. P.84-87.

f) Kontorovich V.M., Shelyag S.I. The influence of merging on galaxy evolution // Astrophys. Space Sci.-2003.-

¹¹ Добавление для WEB-страницы. См. также обзор Кац А.В., Конторович В.М. Скрытая масса и взрывная эволюция галактик. ВАНТ №4 (68) 2010, с.137-142.

Vol.284, №2.- P.475-478.

[27]

a) Blandford R.D. Physical processes in Active Galactic Nuclei. In: Active Galactic Nuclei, Ed. by R.D.Blandford,
H.Netzer and L.Voltjer. Berlin: Springer.–1990.– P.161-276.

b) Rees M. "Dead quasars" in nearby galaxies? // Science.-1990.- Vol.247, № 4944.- P. 817-823.

c) Bacall J.N., Kirhakos S., Schneider D.P. PKS 2349-014: a luminous quasar with thin wisps // Astrophys.J.– 1995.– Vol.447, №1.– P. L1-4.

d) Hernquist L., Mihos J.C. Excitation of activity in galaxies by minor mergers // Astrophys.J.– 1995.– Vol.448,
 №1.– P.41-63.

e) Sanders D.B., Mirabel I.P. Luminous Infrared Galaxies // Ann. Rev. Astron. Astrophys.- 1996.- Vol.34, P.749-792.

f) Cavaliere A., Vittorini V.The rise and fall of the quasars //astro-ph/9802320; The fall of the quasar population, Astrophys.J.- 2000 .- Vol.543, №2.- P.599-610.

g) Valtonen M.J., Heinamaki P. Double Radio Sources: Two Approaches // Astrophys.J.– 2000.– Vol.530, №1.– P.107-123.

[28]

а) Голицын Г.С.. Статистические закономерности макропроцессов: случайные блуждания в пространстве импульсов // ДАН. – 2004. – Т.398, №2, С.117-180; Феноменологическое объяснение формы спектра космических лучей с энергиями *E*>10 ГэВ // Письма в Астрон. Журнал. – 2005. – Т.31, №7. – С.500-505.

космических лучей с энергиями E > 10 г эD % письма в Астрон. Журнал. – 2005. – 1.51, $M \ge 7. - 0.500-5$

b) Монин А.С., Яглом А.М. Статистическая гидромеханика. Ч.2.– М.:Наука, 1967. –720 с.

с) Гинзбург В.Л., Сыроватский С.И. Происхождение космических лучей, М.: Изд. АН СССР, 1963, 384с; Березинский В.С., Буланов С.В., Гинзбург В.Л., Догель В.А., Птускин В.С. Астрофизика космических лучей. М.: Наука.–1984.– 360с.

d) Жданов С.К., Трубников Б.А. Квазигазовые неустойчивые среды. М.: Наука.-1991.- 176 с.

e) Zaslavskii G.M. Chaos, fractional kinetics and anomalous transport // Phys.Rep.– 2002.– Т.371.– Р.461-580; Зеленый Л.М., Милованов А.В. Фрактальная топология и странная кинетика: от теории перколяции к проблемам космической электродинамики // УФН.– 2004.– Т.174, №8.– С.809-852.

f) M.Gilfanov. X-ray variability, viscous time and Lindblad resonances in LMXB. In: Cosmology and high Energy Astrophysics, Moscow, 2004, <u>hea.iki.rssi.ru/Z-90;</u> K.Postnov. X-ray luminocity function of low-mass X-ray binaries in galaxies. **ibid**.

g) Железняков В.В. Излучение в астрофизической плазме. М.: Издат-во "Янус-К".– 1997.– 528 с.

а) Кац А.В., Конторович В.М. Группа симметрии кинетического уравнения и стационарные распределения
 в слаботурбулентной плазме. Препринт ИРЭ АН Украинской ССР, Харьков, № 53, 1975г., 10 с; Kats A.V.,
 Kontorovich V.M.. Symmetry group of the kinetic equation and stationary distributions in a weak turbulent plasma
 // Physica.– 1977.– Vol.86a.– P. 471-476.

b) Любарский Г.Я. Теория групп и ее применения в физике. М.:Наука.– 1957.– 254с.

с) Боцман В.И.,Кац А.В.,Конторович В.М. Индуцированное рассеяние и связанные спектры ленгмюровской турбулентности и частиц в плазме // Докл. АН СССР. – 1975. – Т.220, №5. – С.1953-1056.

d) Волоцкий С.В., Кац А.В., Конторович В.М. Преобразования симметрии интеграла столкновений, описывающего рассеяние квазичастиц с законом дисперсии, близким к линейному // Доп. АН УРСР. – 1980. – cep.A, No11. – C. 66-70.

e) Zakharov V.E., Shulman E.I. Degenerative dispersion laws, motion invariants and kinetic equations // Physica D.-1980.-Vol.1, No1.-P. 192-202.

[30]

а) Кац А.В., Конторович В.М. Скейлинг и спектры развитого волнения // ДАН Укр.ССР, сер.А.– 1985, №11.– С.49-52.

b) Паташинский А.З., Покровский В.Л. Флуктуационная теория фазовых переходов. М: Наука.– 1975.– 255с.

с) Захаров В.Е., Львов В.С. О статистическом описании нелинейных волновых процессов // Изв. ВУЗов, Радиофизика. – 1975. – Т.18, №10. – С.1112-1114.